Shear wave velocity prediction based on 1DCNN-BiLSTM network with attention mechanism

被引:1
|
作者
Feng, Gang [1 ]
Liu, Wen-Qing [1 ]
Yang, Zhe [1 ]
Yang, Wei [1 ]
机构
[1] PetroChina, Res Inst Petr Explorat & Dev Northwest NWGI, Lanzhou, Peoples R China
关键词
shear wave velocity prediction; well logging data; convolution neural network; bidirectional long short-term memory; attention mechanism; deep learning; ELASTIC WAVES; POROSITY; PROPAGATION; RESERVOIR; SYSTEMS; MODEL;
D O I
10.3389/feart.2024.1376344
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Shear wave (S-wave) velocity is an essential parameter in reservoir characterization and evaluation, fluid identification, and prestack inversion. However, the cost of obtaining S-wave velocities directly from dipole acoustic logging is relatively high. At the same time, conventional data-driven S-wave velocity prediction methods exhibit several limitations, such as poor accuracy and generalization of empirical formulas, inadequate exploration of logging curve patterns of traditional fully connected neural networks, and gradient explosion and gradient vanishing problems of recurrent neural networks (RNNs). In this study, we present a reliable and low-cost deep learning (DL) approach for S-wave velocity prediction from real logging data to facilitate the solution of these problems. We designed a new network sensitive to depth sequence logging data using conventional neural networks. The new network is composed of one-dimensional (1D) convolutional, bidirectional long short-term memory (BiLSTM), attention, and fully connected layers. First, the network extracts the local features of the logging curves using a 1D convolutional layer, and then extracts the long-term sequence features of the logging curves using the BiLSTM layer, while adding an attention layer behind the BiLSTM network to further highlight the features that are more significant for S-wave velocity prediction and minimize the influence of other features to improve the accuracy of S-wave velocity prediction. Afterward, the nonlinear mapping relationship between logging data and S-wave velocity is established using several fully connected layers. We applied the new network to real field data and compared its performance with three traditional methods, including a long short-term memory (LSTM) network, a back-propagation neural network (BPNN), and an empirical formula. The performance of the four methods was quantified in terms of their coefficient of determination (R 2), root mean square error (RMSE), and mean absolute error (MAE). The new network exhibited better performance and generalization ability, with R 2 greater than 0.95 (0.9546, 0.9752, and 0.9680, respectively), RMSE less than 57 m/s (56.29, 23.18, and 30.17 m/s, respectively), and MAE less than 35 m/s (34.68, 16.49, and 21.47 m/s, respectively) for the three wells. The test results demonstrate the efficacy of the proposed approach, which has the potential to be widely applied in real areas where S-wave velocity logging data are not available. Furthermore, the findings of this study can help for a better understanding of the superiority of deep learning schemes and attention mechanisms for logging parameter prediction.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] PM2.5 Concentration Prediction Based on CNN-BiLSTM and Attention Mechanism
    Zhang, Jinsong
    Peng, Yongtao
    Ren, Bo
    Li, Taoying
    ALGORITHMS, 2021, 14 (07)
  • [42] A CNN-BiLSTM model with attention mechanism for earthquake prediction
    Parisa Kavianpour
    Mohammadreza Kavianpour
    Ehsan Jahani
    Amin Ramezani
    The Journal of Supercomputing, 2023, 79 : 19194 - 19226
  • [43] Life Prediction for Machinery Components Based on CNN-BiLSTM Network and Attention Model
    Wang, Mengyong
    Cheng, Jian
    Zhai, Hongyu
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 851 - 855
  • [44] A Method for Sound Speed Profile Prediction Based on CNN-BiLSTM-Attention Network
    Wei, Zhang
    Jin, Shaohua
    Gang, Bian
    Yang, Cui
    Peng, Chengyang
    Xia, Haixing
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (03)
  • [45] A Network Intrusion Detection Model Based on BiLSTM with Multi-Head Attention Mechanism
    Zhang, Jingqi
    Zhang, Xin
    Liu, Zhaojun
    Fu, Fa
    Jiao, Yihan
    Xu, Fei
    ELECTRONICS, 2023, 12 (19)
  • [46] Shear wave velocity prediction based on adaptive particle swarm optimization optimized recurrent neural network
    Wang, Jun
    Cao, Junxing
    Yuan, Shan
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 194
  • [47] Research on Fault Detection for Microservices Based on Log Information and Social Network Mechanism Using BiLSTM-DCNN Model
    Guan, Shuai-Peng
    Chen, Zi-Hao
    Wu, Pei-Xuan
    Guo, Man-Yuan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2023,
  • [48] Deep-AFPpred: identifying novel antifungal peptides using pretrained embeddings from seq2vec with 1DCNN-BiLSTM
    Sharma, Ritesh
    Shrivastava, Sameer
    Singh, Sanjay Kumar
    Kumar, Abhinav
    Saxena, Sonal
    Singh, Raj Kumar
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [49] A Novel Trajectory Prediction Method Based on CNN, BiLSTM, and Multi-Head Attention Mechanism
    Xu, Yue
    Pan, Quan
    Wang, Zengfu
    Hu, Baoquan
    AEROSPACE, 2024, 11 (10)
  • [50] Remaining Useful Life Prediction of Milling Cutters Based on CNN-BiLSTM and Attention Mechanism
    Nie, Lei
    Zhang, Lvfan
    Xu, Shiyi
    Cai, Wentao
    Yang, Haoming
    SYMMETRY-BASEL, 2022, 14 (11):