Simulation of gravity field estimation of Phobos for Martian Moon eXploration (MMX)

被引:2
|
作者
Yamamoto, Keiko [1 ]
Matsumoto, Koji [2 ,3 ]
Ikeda, Hitoshi [4 ]
Senshu, Hiroki [5 ]
Willner, Konrad [6 ]
Ziese, Ramona [7 ]
Oberst, Juergen [7 ]
机构
[1] Natl Astron Observ Japan, RISE Project, Mitaka, Tokyo 1818588, Japan
[2] Natl Astron Observ Japan, RISE Project, Oshu, Iwate 0230861, Japan
[3] Grad Univ Adv Studies, SOKENDAI, Hayama, Kanagawa 2400193, Japan
[4] Japan Aerosp Explorat Agcy, Res & Dev Directorate, Sagamihara, Kanagawa 2525210, Japan
[5] Chiba Inst Technol, Planetary Explorat Res Ctr, Narashino, Chiba 2750016, Japan
[6] German Aerosp Ctr DLR, Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany
[7] Tech Univ Berlin, Inst Geodesy & Geoinformat Sci, Kaiserin Augusta Allee 104-106, D-10553 Berlin, Germany
来源
EARTH PLANETS AND SPACE | 2024年 / 76卷 / 01期
关键词
Martian Moon eXploration; Phobos; Orbit determination; Gravity field; Internal density structure; MARS; ORBITS;
D O I
10.1186/s40623-024-02017-4
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We study the dynamic orbit about Phobos of the Martian Moon eXploration (MMX) spacecraft and simulate gravity field estimation using Doppler, image landmarks, and LIght Detection And Ranging (LIDAR) data based on a mission plan of MMX and investigate whether the differences in the internal density structure of Phobos can be detected through this mission. Degree 2 Stokes coefficients of the Phobos gravity field, C <overline> 20 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{C} }_{20}$$\end{document} and C <overline> 22 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{C} }_{22}$$\end{document} , which are necessary to obtain the moment of inertia by combining with the libration amplitude, could be determined with an accuracy within the order of 0.1% using datasets from two-dimensional (2D) quasi-satellite orbits (QSOs). If observations from 3D-QSO could be realized at low altitude, coefficients up to degree and order 5 could be estimated, which could be used to detect regional density anomalies. Moreover, the observation data from the ascending trajectory after landing on the Phobos surface can be used to detect local density anomalies around the landing site, which could help interpret the origin of the samples and understand the internal structure of Phobos.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Surface refreshing of Martian moon Phobos by orbital eccentricity-driven grain motion
    Ronald-Louis Ballouz
    Nicola Baresi
    Sarah T. Crites
    Yasuhiro Kawakatsu
    Masaki Fujimoto
    Nature Geoscience, 2019, 12 : 229 - 234
  • [32] Surface refreshing of Martian moon Phobos by orbital eccentricity-driven grain motion
    Ballouz, Ronald-Louis
    Baresi, Nicola
    Crites, Sarah T.
    Kawakatsu, Yasuhiro
    Fujimoto, Masaki
    NATURE GEOSCIENCE, 2019, 12 (04) : 229 - +
  • [33] A simulation of Martian gravity field recovery by using a near equatorial orbiter
    Yan, Jianguo
    Li, Fei
    Ping, Jingsong
    Dohm, James M.
    Harada, Yuji
    Zhong, Zhen
    ADVANCES IN SPACE RESEARCH, 2012, 49 (05) : 1019 - 1027
  • [34] Pneumatic Sampler (P-Sampler) for the Martian Moons eXploration (MMX) Mission
    Zacny, Kris
    Thomas, Lisa
    Paulsen, Gale
    Van Dyne, Dylan
    Lam, Sherman
    Williams, Hunter
    Sabahi, Dara
    Ng, Phil
    Satou, Yasutaka
    Kato, Hiroki
    Sawada, Hirotaka
    Usui, Tomohiro
    Fujimoto, Masaki
    Mueller, Robert
    Zolensky, Mike
    Statler, Tom
    Dudzinski, Len
    Chu, Phil
    Spring, Justin
    2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020), 2020,
  • [35] PHOBOS-II RESULTS AND THE MARTIAN MAGNETIC-FIELD
    ORGZALL, I
    FRANCK, S
    EARTH MOON AND PLANETS, 1990, 48 (02): : 183 - 186
  • [36] Natural motion around the Martian moon Phobos: the dynamical substitutes of the Libration Point Orbits in an elliptic three-body problem with gravity harmonics
    Zamaro, M.
    Biggs, J. D.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2015, 122 (03): : 263 - 302
  • [37] Natural motion around the Martian moon Phobos: the dynamical substitutes of the Libration Point Orbits in an elliptic three-body problem with gravity harmonics
    M. Zamaro
    J. D. Biggs
    Celestial Mechanics and Dynamical Astronomy, 2015, 122 : 263 - 302
  • [38] Translated spherical harmonics for semi-global gravitational field modeling: examples for Martian moon Phobos and asteroid 433 Eros
    Hu, Xuanyu
    JOURNAL OF GEODESY, 2025, 99 (03)
  • [39] Tether System in Martian-MoonseXploration-Like Mission for Phobos Surface Exploration
    Aslanov, Vladimir S.
    JOURNAL OF SPACECRAFT AND ROCKETS, 2024, 61 (01) : 319 - 326
  • [40] Light detection and ranging (LIDAR) laser altimeter for the Martian Moons Exploration (MMX) spacecraft
    Senshu, Hiroki
    Mizuno, Takahide
    Umetani, Kazuhiro
    Nakura, Toru
    Konishi, Akihiro
    Ogawa, Akihiko
    Ikeda, Hirokazu
    Matsumoto, Koji
    Noda, Hirotomo
    Ishihara, Yoshiaki
    Sasaki, Sho
    Tateno, Naoki
    Ikuse, Yasuyuki
    Mayuzumi, Katsunori
    Kase, Teiji
    Kashine, Hisayoshi
    EARTH PLANETS AND SPACE, 2021, 73 (01):