Computerized Classification Method for Histological Classification of Masses on Breast Ultrasonographic Images Using Convolutional Neural Networks with ROI Pooling

被引:0
|
作者
Hizukuri A. [1 ]
Kunieda S. [1 ]
Nakayama R. [1 ]
机构
[1] Department of Electronic and Computer Engineering, Ritsumeikan University, 1-1-1, Noji-higashi, Shiga, Kusatsu
来源
IEEJ Transactions on Electronics, Information and Systems | 2022年 / 142卷 / 05期
关键词
breast ultrasonographic image; convolutional neural networks; histological classification; mass; ROI pooling;
D O I
10.1541/ieejeiss.142.586
中图分类号
学科分类号
摘要
It can be difficult for clinicians to correctly determine histological classifications of masses on breast ultrasonographic images. The purpose of this study was to develop a computerized classification method for histological classification of masses on breast ultrasonographic images using convolutional neural networks (CNN) with a ROI pooling that analyzes feature maps focusing on the mass region. Our dataset consisted of 585 breast ultrasonographic images obtained from 585 patients. It included 288 malignant masses (218 invasive and 70 noninvasive carcinomas) and 297 benign masses (115 cysts and 182 fibroadenomas). In this study, we developed a modified CNN model based on ResNet-18, in which the ROI pooling and two fully connected layers with a softmax function were introduced after the second and fourth residual block on ResNet-18, respectively. The proposed CNN model was employed to distinguish among four different types of histological classifications for masses. A three-fold cross validation method was used for training and testing the proposed CNN model. The average accuracy, sensitivity, specificity, positive predictive value and negative predictive value for the proposed CNN model were 81.7%, 91.0%, 91.2%, 91.0%, and 91.2%, respectively. Those results were substantially greater than those with ResNet-18 (70.3%, 83.0%, 87.2%, 86.3%, and 84.1%). © 2022 The Institute of Electrical Engineers of Japan.
引用
收藏
页码:586 / 592
页数:6
相关论文
共 50 条
  • [41] Using Convolutional Neural Networks for Classification of Bifurcation Regions in IVOCT Images
    Miyagawa, M.
    Costa, M. G. F.
    Gutierrez, M. A.
    Costa, J. P. G. F.
    Costa Filho, C. F. F.
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 5597 - 5600
  • [42] CLASSIFICATION OF HYPERSPECTRAL COLON CANCER IMAGES USING CONVOLUTIONAL NEURAL NETWORKS
    Mobilia, Sean
    Sirkeci-Mergen, Birsen
    Deal, Joshua
    Rich, Thomas C.
    Leavesley, Silas J.
    2019 IEEE DATA SCIENCE WORKSHOP (DSW), 2019, : 232 - 236
  • [43] Classification of polarimetric SAR images using compact convolutional neural networks
    Ahishali, Mete
    Kiranyaz, Serkan
    Ince, Turker
    Gabbouj, Moncef
    GISCIENCE & REMOTE SENSING, 2021, 58 (01) : 28 - 47
  • [44] Encoding candlesticks as images for pattern classification using convolutional neural networks
    Jun-Hao Chen
    Yun-Cheng Tsai
    Financial Innovation, 6
  • [45] Diagnostic Classification of Cystoscopic Images Using Deep Convolutional Neural Networks
    Eminaga, Okyaz
    Eminaga, Nurettin
    Semjonow, Axel
    Breil, Bernhard
    JCO CLINICAL CANCER INFORMATICS, 2018, 2 : 1 - 8
  • [46] Classification of Blood Cancer Images Using a Convolutional Neural Networks Ensemble
    Ma, Kaiqiang
    Sun, Lingling
    Wang, Yaqi
    Wang, Junchao
    ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [47] Classification of Diabetic Rat Histopathology Images Using Convolutional Neural Networks
    Yurttakal, Ahmet Hasim
    Erbay, Hasan
    Cinarer, Gokalp
    Bas, Hatice
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01) : 715 - 722
  • [48] Diagnostic Classification of Cystoscopic Images Using Deep Convolutional Neural Networks
    Narter, Fehmi
    JOURNAL OF UROLOGICAL SURGERY, 2019, 6 (03): : 264 - 264
  • [49] Fingerprint Classification Using Convolutional Neural Networks and Ridge Orientation Images
    Shrein, John M.
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 3242 - 3249
  • [50] Drone Classification Using Convolutional Neural Networks With Merged Doppler Images
    Kim, Byung Kwan
    Kang, Hyun-Seong
    Park, Seong-Ook
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (01) : 38 - 42