Two-level machine learning driven intrusion detection model for IoT environments

被引:2
|
作者
Malhi, Yuvraj Singh [1 ]
Shekhawat, Virendra Singh [2 ]
机构
[1] Birla Inst Technol & Sci, Dept Elect & Elect, Pilani, Rajasthan, India
[2] Birla Inst Technol & Sci, Dept Comp Sci & Informat Syst, New Acad Block 6121-R, Pilani, Rajasthan, India
关键词
deep learning; machine learning; intrusion detection system; IDS; random forest; network security; internet of things; IoT; denial-of-service; DoS; soft computing; modular detection; IoT security;
D O I
10.1504/IJICS.2023.132708
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a consequence of the growing number of cyberattacks on IoT devices, the need for defences like intrusion detection systems (IDSs) has significantly risen. But current IDS implementations for IoT are complex to design, difficult to incorporate, platform-specific, and limited by IoT device's resource constraints. This paper proposes a deployment-ready network IDS for IoT that overcomes the shortcomings of the existing IDS solutions and can detect 22 types of attacks. The proposed IDS provide the flexibility to work in multiple modes as per IoT device computing power, made possible via development of three machine learning-based IDS modules. The intrusion detection task has been divided at two levels: at edge devices (using two light modules based on neural network and decision tree) and at centralised controller (using a random forest and XGBoost combination). To ensure the best working tandem of developed modules, different IDS deployment strategies are also given.
引用
收藏
页码:229 / 261
页数:34
相关论文
共 50 条
  • [21] Machine Learning for Forensic Occupancy Detection in IoT Environments
    Deconto, Guilherme Dall'Agnol
    Zorzo, Avelino Francisco
    Dalalana, Daniel Bertoglio
    Oliveira, Edson, Jr.
    Lunardi, Roben Castagna
    GOOD PRACTICES AND NEW PERSPECTIVES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 1, WORLDCIST 2024, 2024, 985 : 102 - 114
  • [22] Service-Aware Two-Level Partitioning for Machine Learning-Based Network Intrusion Detection With High Performance and High Scalability
    Uhm, Yeongje
    Pak, Wooguil
    IEEE ACCESS, 2021, 9 : 6608 - 6622
  • [23] Intrusion Tolerance as a Two-Level Game
    Hammar, K.
    Stadler, R.
    DECISION AND GAME THEORY FOR SECURITY, GAMESEC 2024, 2025, 14908 : 3 - 23
  • [24] Toward an intrusion detection model for IoT-based smart environments
    Hazman, Chaimae
    Guezzaz, Azidine
    Benkirane, Said
    Azrour, Mourade
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (22) : 62159 - 62180
  • [25] Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT
    Ben Slimane, Jihane
    Abd-Elkawy, Eman H.
    Maqbool, Albia
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 2140 - 2149
  • [26] Federated Machine Learning to Enable Intrusion Detection Systems in IoT Networks
    Devine, Mark
    Ardakani, Saeid Pourroostaei
    Al-Khafajiy, Mohammed
    James, Yvonne
    ELECTRONICS, 2025, 14 (06):
  • [27] A machine learning based IoT for providing an intrusion detection system for security
    Atul, Dhanke Jyoti
    Kamalraj, R.
    Ramesh, G.
    Sankaran, K. Sakthidasan
    Sharma, Sudhir
    Khasim, Syed
    MICROPROCESSORS AND MICROSYSTEMS, 2021, 82
  • [28] IoTProtect: A Machine-Learning Based IoT Intrusion Detection System
    Alani, Mohammed M.
    2022 6TH INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, SECURITY AND PRIVACY, CSP 2022, 2022, : 61 - 65
  • [29] Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT
    Rose, Joseph R.
    Swann, Matthew
    Bendiab, Gueltoum
    Shiaeles, Stavros
    Kolokotronis, Nicholas
    PROCEEDINGS OF THE 2021 IEEE 7TH INTERNATIONAL CONFERENCE ON NETWORK SOFTWARIZATION (NETSOFT 2021): ACCELERATING NETWORK SOFTWARIZATION IN THE COGNITIVE AGE, 2021, : 409 - 415
  • [30] Two-level feature selection method based on SVM for intrusion detection
    Wu, Xiao-Nian
    Peng, Xiao-Jin
    Yang, Yu-Yang
    Fang, Kun
    Tongxin Xuebao/Journal on Communications, 2015, 36 (04):