Hierarchical Few-Shot Object Detection: Problem, Benchmark and Method

被引:6
|
作者
Zhang, Lu [1 ]
Wang, Yang [2 ]
Zhou, Jiaogen [3 ]
Zhang, Chenbo [1 ]
Zhang, Yinglu [1 ]
Guan, Jihong [2 ]
Bian, Yatao [4 ]
Zhou, Shuigeng [1 ]
机构
[1] Fudan Univ, Shanghai, Peoples R China
[2] Tongji Univ, Shanghai, Peoples R China
[3] Huaiyin Normal Univ, Sch Urban & Environm Sci, Huaian, Peoples R China
[4] Tencent AI Lab, Shenzhen, Peoples R China
关键词
Few-shot object detection; hierarchical few-shot object detection; Benchmark; hierarchical classification;
D O I
10.1145/3503161.3548412
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Few-shot object detection (FSOD) is to detect objects with a few examples. However, existing FSOD methods do not consider hierarchical fine-grained category structures of objects that exist widely in real life. For example, animals are taxonomically classified into orders, families, genera and species etc. In this paper, we propose and solve a new problem called hierarchical few-shot object detection (Hi-FSOD), which aims to detect objects with hierarchical categories in the FSOD paradigm. To this end, on the one hand, we build the first large-scale and high-quality Hi-FSOD benchmark dataset HiFSOD-Bird, which contains 176,350 wild-bird images falling to 1,432 categories. All the categories are organized into a 4-level taxonomy, consisting of 32 orders, 132 families, 572 genera and 1,432 species. On the other hand, we propose the first Hi-FSOD method HiCLPL, where a hierarchical contrastive learning approach is developed to constrain the feature space so that the feature distribution of objects is consistent with the hierarchical taxonomy and the model's generalization power is strengthened. Meanwhile, a probabilistic loss is designed to enable the child nodes to correct the classification errors of their parent nodes in the taxonomy. Extensive experiments on the benchmark dataset HiFSOD-Bird show that our method HiCLPL outperforms the existing FSOD methods.
引用
收藏
页码:2002 / 2011
页数:10
相关论文
共 50 条
  • [31] σ-Adaptive Decoupled Prototype for Few-Shot Object Detection
    Du, Jinhao
    Zhang, Shan
    Chen, Qiang
    Le, Haifeng
    Sun, Yanpeng
    Ni, Yao
    Wang, Jian
    He, Bin
    Wang, Jingdong
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18904 - 18914
  • [32] Center Heatmap Attention for Few-Shot Object Detection
    Li, Fanglin
    Yuan, Jie
    Yi, Fengshu
    Cai, Xiaomin
    Gao, Hao
    INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND ROBOTICS 2021, 2021, 11884
  • [33] Proposal Distribution Calibration for Few-Shot Object Detection
    Li, Bohao
    Liu, Chang
    Shi, Mengnan
    Chen, Xiaozhong
    Ji, Xiangyang
    Ye, Qixiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1911 - 1918
  • [34] Few-Shot Object Detection Based on Association and Discrimination
    Jia Jianli
    Han Huiyan
    Kuang Liqun
    Han Fangzheng
    Zheng Xinyi
    Zhang Xiuquan
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (08)
  • [35] Few-Shot Object Detection via Sample Processing
    Xu, Honghui
    Wang, Xinqing
    Shao, Faming
    Duan, Baoguo
    Zhang, Peng
    IEEE ACCESS, 2021, 9 (09): : 29207 - 29221
  • [36] Temporal Speciation Network for Few-Shot Object Detection
    Zhao, Xiaowei
    Liu, Xianglong
    Ma, Yuqing
    Bai, Shihao
    Shen, Yifan
    Hao, Zeyu
    Liu, Aishan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8267 - 8278
  • [37] Orthogonal Progressive Network for Few-shot Object Detection
    Wang, Bingxin
    Yu, Dehong
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 264
  • [38] Generalized Few-Shot Object Detection without Forgetting
    Fan, Zhibo
    Ma, Yuchen
    Li, Zeming
    Sun, Jian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4525 - 4534
  • [39] Open-World Few-Shot Object Detection
    Chen, Wei
    Zhang, Shengchuan
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 556 - 567
  • [40] Few-Shot Object Detection on Remote Sensing Images
    Li, Xiang
    Deng, Jingyu
    Fang, Yi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60