A high-dimensional single-index regression for interactions between treatment and covariates

被引:0
|
作者
Park, Hyung [1 ]
Tarpey, Thaddeus [1 ]
Petkova, Eva [1 ]
Ogden, R. Todd [2 ]
机构
[1] NYU, Sch Med, Dept Populat Hlth, Div Biostat, New York, NY 10016 USA
[2] Columbia Univ, Dept Biostat, New York, NY 10032 USA
基金
美国国家卫生研究院;
关键词
Precision medicine; Modified covariate method; Single-index model; Sufficient reduction; Central mean subspace; VARIABLE SELECTION; ANTIDEPRESSANT RESPONSE; ESTABLISHING MODERATORS; REDUCTION; BIOSIGNATURES; LASSO;
D O I
10.1007/s00362-024-01546-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper explores a methodology for dimension reduction in regression models for a treatment outcome, specifically to capture covariates' moderating impact on the treatment-outcome association. The motivation behind this stems from the field of precision medicine, where a comprehensive understanding of the interactions between a treatment variable and pretreatment covariates is essential for developing individualized treatment regimes (ITRs). We provide a review of sufficient dimension reduction methods suitable for capturing treatment-covariate interactions and establish connections with linear model-based approaches for the proposed model. Within the framework of single-index regression models, we introduce a sparse estimation method for a dimension reduction vector to tackle the challenges posed by high-dimensional covariate data. Our methods offer insights into dimension reduction techniques specifically for interaction analysis, by providing a semiparametric framework for approximating the minimally sufficient subspace for interactions.
引用
收藏
页码:4025 / 4056
页数:32
相关论文
共 50 条
  • [41] Testing interaction between treatment and high-dimensional covariates in randomized clinical trials
    Callegaro, Andrea
    Spiessens, Bart
    Dizier, Benjamin
    Montoya, Fernando U.
    van Houwelingen, Hans C.
    BIOMETRICAL JOURNAL, 2017, 59 (04) : 672 - 684
  • [42] A hybrid omnibus test for generalized semiparametric single-index models with high-dimensional covariate sets
    Xu, Yangyi
    Kim, Inyoung
    Carroll, Raymond J.
    BIOMETRICS, 2019, 75 (03) : 757 - 767
  • [43] Rates of convergence of the constrained least squares estimator in high-dimensional monotone single-index models
    Fragneau, Christopher
    Balabdaoui, Fadoua
    Durot, Cecile
    Stefan, Skander
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2025, 54 (04) : 1180 - 1204
  • [44] Doubly robust and efficient estimators for heteroscedastic partially linear single-index models allowing high dimensional covariates
    Ma, Yanyuan
    Zhu, Liping
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (02) : 305 - 322
  • [45] Penalized estimation for competing risks regression with applications to high-dimensional covariates
    Ambrogi, Federico
    Scheike, Thomas H.
    BIOSTATISTICS, 2016, 17 (04) : 708 - 721
  • [46] A Note on High-Dimensional Linear Regression With Interactions
    Hao, Ning
    Zhang, Hao Helen
    AMERICAN STATISTICIAN, 2017, 71 (04): : 291 - 297
  • [47] Multidimensional single-index signal regression
    Marx, Brian D.
    Eilers, Paul H. C.
    Li, Bin
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2011, 109 (02) : 120 - 130
  • [48] Single-index Thresholding in Quantile Regression
    Zhang, Yingying
    Wang, Huixia Judy
    Zhu, Zhongyi
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 2222 - 2237
  • [49] Single-index composite quantile regression
    Jiang, Rong
    Zhou, Zhan-Gong
    Qian, Wei-Min
    Shao, Wen-Qiong
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (03) : 323 - 332
  • [50] Single-index composite quantile regression
    Rong Jiang
    Zhan-Gong Zhou
    Wei-Min Qian
    Wen-Qiong Shao
    Journal of the Korean Statistical Society, 2012, 41 : 323 - 332