A Survey on Recent Advances in Keyphrase Extraction from Pre-trained Language Models

被引:0
|
作者
Song, Mingyang [1 ]
Feng, Yi [1 ]
Jing, Liping [1 ]
机构
[1] Beijing Jiaotong Univ, Beijing Key Lab Traff Data Anal & Min, Beijing, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Keyphrase Extraction (KE) is a critical component in Natural Language Processing (NLP) systems for selecting a set of phrases from the document that could summarize the important information discussed in the document. Typically, a keyphrase extraction system can significantly accelerate the speed of information retrieval and help people get first-hand information from a long document quickly and accurately. Specifically, keyphrases are capable of providing semantic metadata characterizing documents and producing an overview of the content of a document. In this paper, we introduce keyphrase extraction, present a review of the recent studies based on pre-trained language models, offer interesting insights on the different approaches, highlight open issues, and give a comparative experimental study of popular supervised as well as unsupervised techniques on several datasets. To encourage more instantiations, we release the related files mentioned in this paper(1).
引用
收藏
页码:2153 / 2164
页数:12
相关论文
共 50 条
  • [41] A Systematic Survey of Chemical Pre-trained Models
    Xia, Jun
    Zhu, Yanqiao
    Du, Yuanqi
    Li, Stan Z.
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 6787 - 6795
  • [42] A Study of Pre-trained Language Models in Natural Language Processing
    Duan, Jiajia
    Zhao, Hui
    Zhou, Qian
    Qiu, Meikang
    Liu, Meiqin
    2020 IEEE INTERNATIONAL CONFERENCE ON SMART CLOUD (SMARTCLOUD 2020), 2020, : 116 - 121
  • [43] Mining Logical Event Schemas From Pre-Trained Language Models
    Lawley, Lane
    Schubert, Lenhart
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022): STUDENT RESEARCH WORKSHOP, 2022, : 332 - 345
  • [44] On the Transferability of Pre-trained Language Models: A Study from Artificial Datasets
    Chiang, Cheng-Han
    Lee, Hung-yi
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 10518 - 10525
  • [45] On the Branching Bias of Syntax Extracted from Pre-trained Language Models
    Li, Huayang
    Liu, Lemao
    Huang, Guoping
    Shi, Shuming
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 4473 - 4478
  • [46] Probing Pre-Trained Language Models for Disease Knowledge
    Alghanmi, Israa
    Espinosa-Anke, Luis
    Schockaert, Steven
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 3023 - 3033
  • [47] Analyzing Individual Neurons in Pre-trained Language Models
    Durrani, Nadir
    Sajjad, Hassan
    Dalvi, Fahim
    Belinkov, Yonatan
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 4865 - 4880
  • [48] Emotional Paraphrasing Using Pre-trained Language Models
    Casas, Jacky
    Torche, Samuel
    Daher, Karl
    Mugellini, Elena
    Abou Khaled, Omar
    2021 9TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION WORKSHOPS AND DEMOS (ACIIW), 2021,
  • [49] Dynamic Knowledge Distillation for Pre-trained Language Models
    Li, Lei
    Lin, Yankai
    Ren, Shuhuai
    Li, Peng
    Zhou, Jie
    Sun, Xu
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 379 - 389
  • [50] Prompt Tuning for Discriminative Pre-trained Language Models
    Yao, Yuan
    Dong, Bowen
    Zhang, Ao
    Zhang, Zhengyan
    Xie, Ruobing
    Liu, Zhiyuan
    Lin, Leyu
    Sun, Maosong
    Wang, Jianyong
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 3468 - 3473