Symplectic Grothendieck polynomials, universal characters and integrable systems

被引:1
|
作者
Huang, Fang [1 ]
Li, Chuanzhong [2 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Symplectic Grothendieck polynomial; Symplectic KP hierarchy; Vertex operators; Symplectic Grothendieck universal character;
D O I
10.1016/j.physd.2024.134110
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the K-theoretic analogs of symplectic Schur functions and symplectic universal character. In this paper, we first show that the linear transformations of the vertex operators presentation of symplectic Schur functions are polynomial tau-functions of symplectic KP hierarchy, and give a new symmetric function called symplectic Grothendieck polynomial, together with its vertex operators and fermions realizations, then prove that these functions are also the polynomial tau-functions of the symplectic KP hierarchy. In addition, we extend these results to universal character, and give a generalization of symplectic Grothendieck polynomial, called symplectic Grothendieck universal character.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] THE SYMPLECTIC TOPOLOGY OF COMPLETELY INTEGRABLE HAMILTONIAN-SYSTEMS
    FOMENKO, AT
    RUSSIAN MATHEMATICAL SURVEYS, 1989, 44 (01) : 181 - 219
  • [42] Semitoric integrable systems on symplectic 4-manifolds
    Pelayo, Alvaro
    Ngoc, San Vu
    INVENTIONES MATHEMATICAE, 2009, 177 (03) : 571 - 597
  • [43] Noncommutative integrable systems on b-symplectic manifolds
    Kiesenhofer, Anna
    Miranda, Eva
    REGULAR & CHAOTIC DYNAMICS, 2016, 21 (06): : 643 - 659
  • [44] Noncommutative integrable systems on b-symplectic manifolds
    Anna Kiesenhofer
    Eva Miranda
    Regular and Chaotic Dynamics, 2016, 21 : 643 - 659
  • [45] Integrable deformations of integrable symplectic maps
    Xia, Baoqiang
    Zhou, Ruguang
    PHYSICS LETTERS A, 2009, 373 (47) : 4360 - 4367
  • [46] Multivariate Orthogonal Laurent Polynomials and Integrable Systems
    Ariznabarreta, Gerardo
    Manas, Manuel
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2022, 58 (01) : 79 - 185
  • [47] BRAUER CHARACTERS AND GROTHENDIECK RINGS
    PUTTASWAMAIAH, BM
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1975, 27 (05): : 1025 - 1028
  • [48] The Stembridge equality for skew stable Grothendieck polynomials and skew dual stable Grothendieck polynomials
    Abney-McPeek, Fiona
    An, Serena
    Ng, Jakin S.
    ALGEBRAIC COMBINATORICS, 2022, 5 (02): : 187 - 208
  • [49] INTEGRABLE SYMPLECTIC MAPS
    BRUSCHI, M
    RAGNISCO, O
    SANTINI, PM
    TU, GZ
    PHYSICA D, 1991, 49 (03): : 273 - 294
  • [50] AN ORTHODONTIA FORMULA FOR GROTHENDIECK POLYNOMIALS
    Meszaros, Karola
    Setiabrata, Linus
    St Dizier, Avery
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (02) : 1281 - 1303