Nonlinear Data-Driven Control Part II: qLPV Predictive Control with Parameter Extrapolation

被引:0
|
作者
Morato, Marcelo Menezes [1 ,2 ]
Normey-Rico, Julio Elias [1 ]
Sename, Olivier [2 ]
机构
[1] Univ Fed Santa Catarina UFSC, Dept Automacao & Sistemas, Florianopolis, Brazil
[2] Univ Grenoble Alpes, Grenoble INP Inst Engn Univ Grenoble Alpes, GIPSA Lab, CNRS, F-38000 Grenoble, France
关键词
Data-driven control; Model Predictive Control; Linear Parameter-Varying systems; Trajectory representation; Nonlinear dynamics; TRACKING MPC; SYSTEMS; DESIGN;
D O I
10.1007/s40313-024-01115-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a novel data-driven Model Predictive Control (MPC) algorithm for nonlinear systems. The method is based on recent extensions of behavioural theory and Willem's Fundamental Lemma for nonlinear systems by the means of adequate Input-Output (IO) quasi-Linear Parameter-Varying (qLPV) embeddings. Thus, the MPC is formulated to ensure regulation and IO constraints satisfaction, based only on measured datasets of sufficient length (and under persistent excitation). The main innovation is to consider the knowledge of the function that maps the qLPV realisation, and apply an extrapolation procedure in order to generate the corresponding future scheduling trajectories, at each sample. Accordingly, we briefly discuss the issues of closed-loop IO stability and recursive feasibility certificates of the method. The algorithm is tested and discussed with the aid of a numerical application.
引用
收藏
页码:802 / 814
页数:13
相关论文
共 50 条
  • [21] Data-driven subspace approach to predictive control
    Huang, Biao
    Kadali, Ramesh
    Lecture Notes in Control and Information Sciences, 2008, 374 : 121 - 141
  • [22] Towards data-driven stochastic predictive control
    Institute of Energy Systems, Energy Efficiency and Energy Economics, TU Dortmund, Dortmund, Germany
    Int J Robust Nonlinear Control,
  • [23] Data-Driven Nonlinear Optimal Control for Distributed Parameter Systems with Output Delay
    Nishida, Gou
    Sakamoto, Noboru
    IFAC PAPERSONLINE, 2018, 51 (03): : 101 - 106
  • [24] Nonlinear Data-Driven Predictive Control using Deep Subspace Prediction Networks
    Lazar, Mircea
    Popescu, Mihai-Serban
    Schoukens, Maarten
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 3770 - 3775
  • [25] Kernelized Offset-Free Data-Driven Predictive Control for Nonlinear Systems
    de Jong, Thomas
    Lazar, Mircea
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 2877 - 2882
  • [26] Data-Driven Control: Part One of Two
    Sepulchre, Rodolphe
    IEEE CONTROL SYSTEMS MAGAZINE, 2023, 43 (05): : 4 - 7
  • [27] Data-driven nonlinear and stochastic dynamics with control
    Xu, Yong
    Lenci, Stefano
    Li, Yongge
    Kurths, Juergen
    NONLINEAR DYNAMICS, 2025, 113 (05) : 3959 - 3964
  • [28] A data-driven approach to nonlinear braking control
    Novara, Carlo
    Formentin, Simone
    Savaresi, Sergio M.
    Milanese, Mario
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 1453 - 1458
  • [29] Data-Driven Predictive Control of Idle Speed Control for SI Engine
    Liang, Yu
    Xie, Xiaohua
    Hu, Yunfeng
    Chen, Hong
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 4535 - 4540
  • [30] Data-Driven Control and Process Monitoring for Industrial Applications-Part II
    Yin, Shen
    Gao, Huijun
    Kaynak, Okyay
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (01) : 583 - 586