Variational Supertrees for Bayesian Phylogenetics

被引:0
|
作者
Karcher, Michael D. [1 ,4 ]
Zhang, Cheng [2 ,3 ]
Matsen IV, Frederic A. [4 ]
机构
[1] Muhlenberg Coll, Dept Math & CS, 2400 W Chew St, Allentown, PA 18104 USA
[2] Peking Univ, Sch Math Sci & China, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[3] Peking Univ, Ctr Stat Sci, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[4] Fred Hutchinson Canc Res Ctr, Computat Biol Program, 1100 Fairview Ave N, Seattle, WA 98109 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Supertrees; Variational methods; Phylogenetics; Gradient descent; Divide-and-conquer; SPECIES TREES; INFERENCE;
D O I
10.1007/s11538-024-01338-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bayesian phylogenetic inference is powerful but computationally intensive. Researchers may find themselves with two phylogenetic posteriors on overlapping data sets and may wish to approximate a combined result without having to re-run potentially expensive Markov chains on the combined data set. This raises the question: given overlapping subsets of a set of taxa (e.g. species or virus samples), and given posterior distributions on phylogenetic tree topologies for each of these taxon sets, how can we optimize a probability distribution on phylogenetic tree topologies for the entire taxon set? In this paper we develop a variational approach to this problem and demonstrate its effectiveness. Specifically, we develop an algorithm to find a suitable support of the variational tree topology distribution on the entire taxon set, as well as a gradient-descent algorithm to minimize the divergence from the restrictions of the variational distribution to each of the given per-subset probability distributions, in an effort to approximate the posterior distribution on the entire taxon set.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] A tutorial on variational Bayesian inference
    Fox, Charles W.
    Roberts, Stephen J.
    ARTIFICIAL INTELLIGENCE REVIEW, 2012, 38 (02) : 85 - 95
  • [42] Variational Bayesian EM for SLAM
    Fatemi, Maryam
    Svensson, Lennart
    Hammarstrand, Lars
    Lundgren, Malin
    2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 501 - 504
  • [43] A tutorial on variational Bayesian inference
    Charles W. Fox
    Stephen J. Roberts
    Artificial Intelligence Review, 2012, 38 : 85 - 95
  • [44] Variational Bayesian Method for Retinex
    Wang, Liqian
    Xiao, Liang
    Liu, Hongyi
    Wei, Zhihui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (08) : 3381 - 3396
  • [45] Conservative Supertrees
    McMorris, F. R.
    Wilkinson, Mark
    SYSTEMATIC BIOLOGY, 2011, 60 (02) : 232 - 238
  • [46] The importance of data partitioning and the utility of bayes factors in Bayesian phylogenetics
    Brown, Jeremy M.
    Lemmon, Alan R.
    SYSTEMATIC BIOLOGY, 2007, 56 (04) : 643 - 655
  • [47] Taxonomic aspects of Peronosporaceae inferred from Bayesian molecular phylogenetics
    Göker, M.
    Voglmayr, H.
    Riethmüller, A.
    Weiß, M.
    Oberwinkler, F.
    Canadian Journal of Botany, 2003, 81 (07): : 672 - 683
  • [48] Cross-validation to select Bayesian hierarchical models in phylogenetics
    Duchene, Sebastian
    Duchene, David A.
    Di Giallonardo, Francesca
    Eden, John-Sebastian
    Geoghegan, Jemma L.
    Holt, Kathryn E.
    Ho, Simon Y. W.
    Holmes, Edward C.
    BMC EVOLUTIONARY BIOLOGY, 2016, 16
  • [49] Long-Branch Attraction Bias and Inconsistency in Bayesian Phylogenetics
    Kolaczkowski, Bryan
    Thornton, Joseph W.
    PLOS ONE, 2009, 4 (12):
  • [50] Taxonomic aspects of Peronosporaceae inferred from Bayesian molecular phylogenetics
    Göker, M
    Voglmayr, H
    Riethmüller, A
    Weiss, M
    Oberwinkler, F
    CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 2003, 81 (07): : 672 - 683