Variational Supertrees for Bayesian Phylogenetics

被引:0
|
作者
Karcher, Michael D. [1 ,4 ]
Zhang, Cheng [2 ,3 ]
Matsen IV, Frederic A. [4 ]
机构
[1] Muhlenberg Coll, Dept Math & CS, 2400 W Chew St, Allentown, PA 18104 USA
[2] Peking Univ, Sch Math Sci & China, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[3] Peking Univ, Ctr Stat Sci, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[4] Fred Hutchinson Canc Res Ctr, Computat Biol Program, 1100 Fairview Ave N, Seattle, WA 98109 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Supertrees; Variational methods; Phylogenetics; Gradient descent; Divide-and-conquer; SPECIES TREES; INFERENCE;
D O I
10.1007/s11538-024-01338-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bayesian phylogenetic inference is powerful but computationally intensive. Researchers may find themselves with two phylogenetic posteriors on overlapping data sets and may wish to approximate a combined result without having to re-run potentially expensive Markov chains on the combined data set. This raises the question: given overlapping subsets of a set of taxa (e.g. species or virus samples), and given posterior distributions on phylogenetic tree topologies for each of these taxon sets, how can we optimize a probability distribution on phylogenetic tree topologies for the entire taxon set? In this paper we develop a variational approach to this problem and demonstrate its effectiveness. Specifically, we develop an algorithm to find a suitable support of the variational tree topology distribution on the entire taxon set, as well as a gradient-descent algorithm to minimize the divergence from the restrictions of the variational distribution to each of the given per-subset probability distributions, in an effort to approximate the posterior distribution on the entire taxon set.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Supertrees join the mainstream of phylogenetics
    Cotton, James A.
    Wilkinson, Mark
    TRENDS IN ECOLOGY & EVOLUTION, 2009, 24 (01) : 1 - 3
  • [2] Evaluating probabilistic programming and fast variational Bayesian inference in phylogenetics
    Fourment, Mathieu
    Darling, Aaron E.
    PEERJ, 2019, 7
  • [3] Stochastic Variational Inference for Bayesian Phylogenetics: A Case of CAT Model
    Dang, Tung
    Kishino, Hirohisa
    MOLECULAR BIOLOGY AND EVOLUTION, 2019, 36 (04) : 825 - 833
  • [4] Molecular tools for phylogenetics at different scales: From phylogeography to supertrees
    Bellstedt, D. U.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2013, 86 : 139 - 139
  • [5] Bayesian phylogenetics of Bryozoa
    Tsyganov-Bodounov, Anton
    Hayward, Peter J.
    Porter, Joanne S.
    Skibinski, David O. F.
    MOLECULAR PHYLOGENETICS AND EVOLUTION, 2009, 52 (03) : 904 - 910
  • [6] Scalable Bayesian phylogenetics
    Fisher, Alexander A.
    Hassler, Gabriel W.
    Ji, Xiang
    Baele, Guy
    Suchard, Marc A.
    Lemey, Philippe
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2022, 377 (1861)
  • [7] The posterior and the prior in Bayesian phylogenetics
    Alfaro, Michael E.
    Holder, Mark T.
    ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS, 2006, 37 : 19 - 42
  • [8] Data Integration in Bayesian Phylogenetics
    Hassler, Gabriel W.
    Magee, Andrew F.
    Zhang, Zhenyu
    Baele, Guy
    Lemey, Philippe
    Ji, Xiang
    Fourment, Mathieu
    Suchard, Marc A.
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2023, 10 : 353 - 377
  • [9] Bayesian Phylogenetics with BEAUti and the BEAST 1.7
    Drummond, Alexei J.
    Suchard, Marc A.
    Xie, Dong
    Rambaut, Andrew
    MOLECULAR BIOLOGY AND EVOLUTION, 2012, 29 (08) : 1969 - 1973
  • [10] Tracing the roots of syntax with Bayesian phylogenetics
    Maurits, Luke
    Griffiths, Thomas L.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (37) : 13576 - 13581