In silico investigation of HCV and RNA synthesis inhibitor antibiotic drugs as potential inhibitors of SARS-CoV-2 main protease (Mpro)

被引:0
|
作者
Kishore, Merusomayajula V. [1 ]
Rao, T. Siva [1 ]
Kumari, G. N. D. [2 ]
机构
[1] Andhra Univ, AU Coll Sci & Technol, Dept Chem, Visakhapatnam 530003, Andhra Pradesh, India
[2] Acharya Nagarjuna Univ, Guntur, India
关键词
SARS-CoV-2 (Mpro); COVID-19; HCV drugs; Docking study; MD simulations; DOCKING; CORONAVIRUSES;
D O I
10.1186/s43094-024-00685-3
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
BackgroundSince December 2019, a global crisis has unfolded with the emergence of a new strain of coronavirus known as SARS-CoV-2. This pandemic has afflicted hundreds of millions of people worldwide, resulting in millions of fatalities. In response to this urgent healthcare crisis, extensive efforts have been made to discover inhibitors of the COVID-19 virus. Given the structural similarities between SARS-CoV-2 and HCV, drugs approved by the FDA for treating HCV were selected and subjected to in silico testing against the SARS-CoV-2 virus, with Remdesivir used as the standard for validation. Drug repurposing and phytochemical testing have also been conducted to identify potential candidates capable of inhibiting or suppressing the infection caused by the coronavirus. The time constraints imposed by the pandemic necessitated the in silico analysis of existing drug molecules against the coronavirus. Eleven HCV drugs approved by the FDA, along with one RNA synthesis inhibitor antibiotic drug, were tested using the in silico method due to their structural similarities with HCV and the SARS-CoV-2 virus.ResultsMolecular docking and MD simulation studies were performed for all selected compounds. Binding energies, root-mean-square deviation, root-mean-square fluctuation, solvent-accessible surface area, radius of gyration, and molecular mechanics generalized born surface area were calculated. Based on docking and MD simulation studies all the selected compounds have shown good binding energy values with Mpro (PDB ID: 6LU7). No toxicity measurements are required for these drugs since they were previously tested prior to their approval by the FDA.ConclusionsThis study shows that FDA-approved HCV drugs can be used as for SARS-COVID-19 inhibitors.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] In silico screening of potential antiviral inhibitors against SARS-CoV-2 main protease
    Palanisamy, Kandhan
    Maiyelvaganan, K. Rudharachari
    Kamalakannan, Shanmugasundaram
    Thilagavathi, Ramasamy
    Selvam, Chelliah
    Prakash, Muthuramalingam
    MOLECULAR SIMULATION, 2023, 49 (02) : 175 - 185
  • [32] Statine-based peptidomimetic compounds as inhibitors for SARS-CoV-2 main protease (SARS-CoV-2 Mpro)
    Azevedo, Pedro Henrique R. de A.
    Camargo, Priscila G.
    Constant, Larissa E. C.
    Costa, Stephany da S.
    Silva, Celimar Sinezia
    Rosa, Alice S.
    Souza, Daniel D. C.
    Tucci, Amanda R.
    Ferreira, Vivian N. S.
    Oliveira, Thamara Kelcya F.
    Borba, Nathalia R. R.
    Rodrigues, Carlos R.
    Albuquerque, Magaly G.
    Dias, Luiza R. S.
    Garrett, Rafael
    Miranda, Milene D.
    Allonso, Diego
    Lima, Camilo Henrique da S.
    Muri, Estela Maris F.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [33] Identification of antiviral phytochemicals from cranberry as potential inhibitors of SARS-CoV-2 main protease (Mpro)
    Pillai, U. Jisha
    Cherian, Lucy
    Taunk, Khushman
    Iype, Eldhose
    Dutta, Mainak
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 261
  • [34] THE COMPUTATIONAL INVESTIGATION OF SIXTEEN ANTIVIRAL DRUGS AGAINST MAIN PROTEASE (MPRO) AND SPIKE PROTEASE (SPRO) OF SARS-CoV-2
    Kumer, Ajoy
    Chakma, Unesco
    Islam, Md. Tawhidul
    Howlader, Debashis
    Hossain, Tomal
    JOURNAL OF THE CHILEAN CHEMICAL SOCIETY, 2021, 66 (04): : 5339 - 5351
  • [35] An In silico Investigation to Identify Promising Inhibitors for SARS-CoV-2 Mpro Target
    Alagarsamy, V.
    Sundar, P. Shyam
    Narendhar, B.
    Sulthana, M. T.
    Kulkarni, Vishaka S.
    Aishwarya, A. Dharshini
    Solomon, V. Raja
    Murugesan, S.
    Jubie, S.
    Rohitha, K.
    Dhanwar, Sangeeta
    MEDICINAL CHEMISTRY, 2023, 19 (09) : 925 - 938
  • [36] Inhibitors of SARS-CoV-2 Main Protease (Mpro) as Anti-Coronavirus Agents
    Zagorska, Agnieszka
    Czopek, Anna
    Fryc, Monika
    Jonczyk, Jakub
    BIOMOLECULES, 2024, 14 (07)
  • [37] Virtual screening of approved drugs as potential SARS-CoV-2 main protease inhibitors
    Jimenez-Alberto, Alicia
    Maria Ribas-Aparicio, Rosa
    Aparicio-Ozores, Gerardo
    Castelan-Vega, Juan A.
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2020, 88 (88)
  • [38] In Silico Mining of Terpenes from Red-Sea Invertebrates for SARS-CoV-2 Main Protease (Mpro) Inhibitors
    Ibrahim, Mahmoud A. A.
    Abdelrahman, Alaa H. M.
    Mohamed, Tarik A.
    Atia, Mohamed A. M.
    Al-Hammady, Montaser A. M.
    Abdeljawaad, Khlood A. A.
    Elkady, Eman M.
    Moustafa, Mahmoud F.
    Alrumaihi, Faris
    Allemailem, Khaled S.
    El-Seedi, Hesham R.
    Pare, Paul W.
    Efferth, Thomas
    Hegazy, Mohamed-Elamir F.
    MOLECULES, 2021, 26 (07):
  • [39] Synthesis and in Silico Investigation of Organoselenium-Clubbed Schiff Bases as Potential Mpro Inhibitors for the SARS-CoV-2 Replication
    Shaaban, Saad
    Abdou, Aly
    Alhamzani, Abdulrahman G.
    Abou-Krisha, Mortaga M.
    Al-Qudah, Mahmoud A.
    Alaasar, Mohamed
    Youssef, Ibrahim
    Yousef, Tarek A.
    LIFE-BASEL, 2023, 13 (04):
  • [40] A Multistage In Silico Study of Natural Potential Inhibitors Targeting SARS-CoV-2 Main Protease
    Elkaeed, Eslam B.
    Eissa, Ibrahim H.
    Elkady, Hazem
    Abdelalim, Ahmed
    Alqaisi, Ahmad M.
    Alsfouk, Aisha A.
    Elwan, Alaa
    Metwaly, Ahmed M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (15)