Simulation and developments for large pellet formation and acceleration for shattered pellet injection of the ITER DMS

被引:6
|
作者
Manzagol J. [1 ]
Boujet T. [1 ]
Luchier N. [1 ]
Jachmich S. [2 ]
Millet F. [1 ]
机构
[1] Univ. Grenoble Alpes, CEA, IRIG-DSBT, Grenoble
[2] ITER Organization, Route de Vinon sur Verdon, CS 90 040, Saint Paul Lez Durance Cedex
关键词
Disruption mitigation system; In-situ pellet desublimation; ITER DMS; Shattered pellet injection;
D O I
10.1016/j.fusengdes.2023.113665
中图分类号
学科分类号
摘要
Amongst the technological developments needed for ITER, the disruption mitigation system (DMS) is one of the most challenging since it has to mitigate the consequences of high-energy plasma disruptions to ensure the lifetime of ITER's structure and in-vessel components. ITER DMS is using Shattered Pellet Injection, whose technology needs to be developed for ITER specific requirements. In the framework of the “Technology Fundamental Studies for DMS” contract with ITER Organization, as part of the ITER DMS Task Force activities, and CEA, the DSBT (Low Temperature Systems Department) designed and operates a pellet injection test bench to produce and accelerate large cryogenic pellets with diameters from 10 to 28.5 mm and length/diameter ratios up to two. The objective of this activity is to study and to optimise the pellet formation and acceleration process using pure Protium, Deuterium, Neon and mixtures of these gases. Analytic and numerical studies were used to define the geometrical and cryogenic parameters for the pellet desublimation in the in-situ condensation cell of the cryostat. An analytical model has also been developed for the pellet acceleration in the single stage gas gun to validate the propellant valve design aiming at achieving velocities of up to 500 m/s for 28.5 mm protium pellets and 200 m/s for neon pellets. The complete test bench is composed of the gas propulsion system, the cryostat with its key component the pellet formation cell, the flight tube and the target chamber with viewing ports. The mechanical assembly is completed with specific instrumentation and fast data acquisition systems for the observation of the pellet formation and acceleration. The pellet integrity and trajectory are characterised by shadowgraphy with high resolution, high-speed cameras located at 1 m and 3 m after the barrel exit and with an accelerometer and a target foil in the target chamber. This document details the simulation studies, the selected test bench design and first obtained results. © 2023
引用
收藏
相关论文
共 50 条
  • [1] Shattered pellet technology development in the ITER DMS test laboratory
    Zoletnik, S.
    Walcz, E.
    Jachmich, S.
    Kruezi, U.
    Lehnen, M.
    Anda, G.
    Szabolics, T.
    Szepesi, T.
    Bartok, G.
    Cseh, G.
    Boros, Z.
    Dunai, D.
    Gardonyi, G.
    Hakl, J.
    Hegedus, S.
    Katona, I.
    Kovacs, A.
    Kocsis, G.
    Lengyel, M.
    Meszaros, S.
    Nagy, D.
    Oravecz, D.
    Poszovecz, L.
    Refy, D.
    Vad, K.
    Vecsei, M.
    FUSION ENGINEERING AND DESIGN, 2023, 190
  • [2] Successful Large Cryogenic Pellets Production and Acceleration for Shattered Pellet Injection for ITER Disruption Mitigation System
    Manzagol, J.
    Boujet, T.
    Luchier, N.
    Millet, F.
    Jachmich, S.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, 52 (09) : 3936 - 3940
  • [3] Acceleration of cryogenic pellets for Shattered Pellet Injection
    Kovacs, A.
    Zoletnik, S.
    Refy, D.
    Papp, G.
    Hegedus, S.
    Szepesi, T.
    Walcz, E.
    Jachmich, S.
    Lehnen, M.
    Kruezi, U.
    Dibon, M.
    de Marne, P.
    Heinrich, P.
    Peherstorfer, T.
    FUSION ENGINEERING AND DESIGN, 2024, 202
  • [4] Results of ITER DMS Pellet Material (Neon) Injection into Large Helical Device)
    Matsuyama, Akinobu
    Sakamoto, Ryuichi
    Plasma and Fusion Research, 2022, 17
  • [5] Results of ITER DMS Pellet Material (Neon) Injection into Large Helical Device
    Matsuyama, Akinobu
    Sakamoto, Ryuichi
    PLASMA AND FUSION RESEARCH, 2022, 17
  • [6] Development of a Shattered Pellet Injector test bench for the ITER DMS support laboratory
    Walcz, E.
    Zoletnik, S.
    Meszaros, S.
    Vad, K.
    Hakl, J.
    Gardonyi, G.
    Jachmich, S.
    Kruezi, U.
    Lehnen, M.
    FUSION ENGINEERING AND DESIGN, 2023, 191
  • [7] Overview of recent developments in pellet injection for ITER
    Combs, Stephen Kirk
    Baylor, L. R.
    Meitner, S. J.
    Caughman, J. B. O.
    Rasmussen, D. A.
    Maruyama, S.
    FUSION ENGINEERING AND DESIGN, 2012, 87 (5-6) : 634 - 640
  • [8] Numerical investigation of Ne pellet formation for EAST shattered pellet injection system
    Li, L.
    Zuo, G. Z.
    Yuan, J. S.
    Zhao, S. B.
    Zhang, D. H.
    Huang, M.
    Hu, J. S.
    FUSION ENGINEERING AND DESIGN, 2024, 204
  • [9] Fast plasma dilution in ITER with pure deuterium shattered pellet injection
    Nardon, E.
    Hu, D.
    Hoelzl, M.
    Bonfiglio, D.
    NUCLEAR FUSION, 2020, 60 (12)
  • [10] Shattered pellet injection simulations with NIMROD
    Kim, Charlson C.
    Liu, Yueqiang
    Parks, Paul B.
    Lao, Lang L.
    Lehnen, Michael
    Loarte, Alberto
    PHYSICS OF PLASMAS, 2019, 26 (04)