Shattered pellet injection simulations with NIMROD

被引:38
|
作者
Kim, Charlson C. [1 ]
Liu, Yueqiang [2 ]
Parks, Paul B. [2 ]
Lao, Lang L. [2 ]
Lehnen, Michael [3 ]
Loarte, Alberto [3 ]
机构
[1] SLS2 Consulting, San Diego, CA 92107 USA
[2] Gen Atom, San Diego, CA 92121 USA
[3] ITER Org, CS 90046, Route Vinon Sur Verdon, F-13067 St Paul Les Durance, France
关键词
D O I
10.1063/1.5088814
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Optimal strategies for disruption mitigation benefit from the understanding of details both spatially and temporally. Beyond the assessment of the efficacy of a particular proposed Disruption Mitigation System (DMS), ITER's longevity will require accounting of both mitigated and unmitigated disruptions. Accurate models and validated simulations that detail multiple ITER scenarios with mitigated and unmitigated disruptions are essential for accurate estimates of load damage. The primary candidate for ITER's DMS is Shattered Pellet Injection (SPI); its efficacy must be evaluated within the next several years. To perform critical time dependent 3-D nonlinear simulations, we have developed a particle based SPI model in the NIMROD code coupled to its modified single fluid equations with impurity and radiation [Izzo, Nucl. Fusion 46(5), 541 (2006)]. SPI validation simulations of the thermal quench and comparisons to DIII-D impurity scan experiments [Shiraki et al., Phys. Plasmas 23(6), 062516 (2016)] are presented. We also present an initial ITER Q = 10 pure neon SPI simulation and compare it with the DIII-D SPI simulations. NIMROD SPI simulations demonstrate that the ablating fragment drives strong parallel flows that transport the impurities and governs the thermal quench. Analysis of SPI simulations shows that the mixed deuterium/neon SPI results in a more benign thermal quench due to the enhanced transport caused by the additional deuterium. These results suggest that an optimal pellet mixture exists for the SPI system. Published under license by AIP Publishing.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] First predictive simulations for deuterium shattered pellet injection in ASDEX Upgrade
    Hoelzl, M.
    Hu, D.
    Nardon, E.
    Huijsmans, G. T. A.
    PHYSICS OF PLASMAS, 2020, 27 (02)
  • [2] MHD modeling of shattered pellet injection in JET
    McClenaghan, J.
    Lyons, B. C.
    Kim, C. C.
    Akcay, C.
    Eidietis, N.
    Lao, L. L.
    Sweeney, R. M.
    Stein-Lubrano, B.
    Sheikh, U.
    Hawkes, N.
    Szepesi, G.
    NUCLEAR FUSION, 2023, 63 (06)
  • [3] Acceleration of cryogenic pellets for Shattered Pellet Injection
    Kovacs, A.
    Zoletnik, S.
    Refy, D.
    Papp, G.
    Hegedus, S.
    Szepesi, T.
    Walcz, E.
    Jachmich, S.
    Lehnen, M.
    Kruezi, U.
    Dibon, M.
    de Marne, P.
    Heinrich, P.
    Peherstorfer, T.
    FUSION ENGINEERING AND DESIGN, 2024, 202
  • [4] Deployment of multiple shattered pellet injection systems in KSTAR
    Park, SooHwan
    Lee, Kunsu
    Baylor, Larry R.
    Meitner, Steven J.
    Lee, HyunMyung
    Song, Jaein
    Gebhart, Trey E.
    Yun, SangWon
    Kim, Jayhyun
    Kim, KwangPyo
    Park, KapRai
    Yoon, Siwoo
    FUSION ENGINEERING AND DESIGN, 2020, 154
  • [5] The integration and tests of the shattered pellet injection system on EAST
    Yuan, J. S.
    Li, L.
    Zuo, G. Z.
    Zhao, S. B.
    Zhang, D. H.
    Zhuang, H. D.
    Huang, M.
    Chen, Y.
    Hou, J. L.
    Hu, J. S.
    FUSION ENGINEERING AND DESIGN, 2024, 205
  • [6] Design of the shattered pellet injection system for ASDEX Upgrade
    Dibon, M.
    de Marne, P.
    Papp, G.
    Vinyar, I.
    Lukin, A.
    Jachmich, S.
    Kruezi, U.
    Muir, A.
    Rohde, V.
    Lehnen, M.
    Heinrich, P.
    Peherstorfer, T.
    Podymskii, D.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (04):
  • [7] Experimental environment for testing the shattered pellet injection of KSTAR
    Park, Soohwan
    Lee, Kunsu
    Kim, Jayhyun
    Lee, Hyunmyung
    Baylor, Larry R.
    Song, Jaein
    Woo, Insik
    Yun, Sangwon
    Kim, Kwangpyo
    Meitner, Steven J.
    Gebhart, Trey E.
    Lehnen, Michael
    Park, Kaprai
    FUSION ENGINEERING AND DESIGN, 2024, 204
  • [8] Physics of runaway electrons with shattered pellet injection at JET
    Reux, C.
    Paz-Soldan, C.
    Eidietis, N.
    Lehnen, M.
    Aleynikov, P.
    Silburn, S.
    Bandaru, V
    Ficker, O.
    Hoelzl, M.
    Hollmann, E. M.
    Jachmich, S.
    Joffrin, E.
    Lomas, P. J.
    Rimini, F.
    Baylor, L.
    Bleasdale, A.
    Calacci, L.
    Causa, F.
    Carnevale, D.
    Coffey, I
    Craven, D.
    Dal Molin, A.
    de la Luna, E.
    De Tommasi, G.
    Garcia, J.
    Gebhart, T.
    Giacomelli, L.
    Huber, A.
    Khilkevich, E.
    Lowry, C.
    Macusova, E.
    Manzanares, A.
    Nocente, M.
    Panontin, E.
    Papp, G.
    Pautasso, G.
    Peacock, A.
    Plyusnin, V
    Shevelev, A.
    Shiraki, D.
    Sommariva, C.
    Sozzi, C.
    Sridhar, S.
    Sweeney, R.
    Szepesi, G.
    Tinguely, R. A.
    Wilson, J.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2022, 64 (03)
  • [9] Shattered Pellet Injection Control System Integration for EAST
    Zhao, Shengbo
    Yuan, Jingsheng
    Chen, Yue
    Duan, Yanmin
    Huang, Ming
    Zhuang, Huidong
    Zuo, Guizhong
    Hu, Jiansheng
    JOURNAL OF FUSION ENERGY, 2023, 42 (02)
  • [10] Numerical investigation of Ne pellet formation for EAST shattered pellet injection system
    Li, L.
    Zuo, G. Z.
    Yuan, J. S.
    Zhao, S. B.
    Zhang, D. H.
    Huang, M.
    Hu, J. S.
    FUSION ENGINEERING AND DESIGN, 2024, 204