An Adaptive Multi-Level Max-Plus Method for Deterministic Optimal Control Problems

被引:0
|
作者
Akian, Marianne
Gaubert, Stephane [1 ,2 ]
Liu, Shanqing [1 ,2 ]
机构
[1] INRIA, F-91128 Palaiseau, France
[2] Ecole Polytech, CNRS, IP Paris, CMAP, F-91128 Palaiseau, France
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
Optimal control; dynamic programming; Hamilton-Jacobi-Bellman PDE; max-plus algebra; curse-of-dimensionality; ALGORITHM;
D O I
10.1016/j.ifacol.2023.10.628
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a new numerical method to approximate the solution of a finite horizon deterministic optimal control problem. We exploit two Hamilton-Jacobi-Bellman PDE, arising by considering the dynamics in forward and backward time. This allows us to compute a neighborhood of the set of optimal trajectories, in order to reduce the search space. The solutions of both PDE are successively approximated by max-plus linear combinations of appropriate basis functions, using a hierarchy of finer and finer grids. We show that the sequence of approximate value functions obtained in this way does converge to the viscosity solution of the HJB equation in a neighborhood of optimal trajectories. Then, under certain regularity assumptions, we show that the number of arithmetic operations needed to compute an approximate optimal solution of a d-dimensional problem, up to a precision e, is bounded by O(C-d| log epsilon|), for some constant C > 1, whereas ordinary grid-based methods have a complexity in O(1/epsilon(ad)) for some constant a > 0. Copyright (c) 2023 The Authors.
引用
收藏
页码:7448 / 7455
页数:8
相关论文
共 50 条
  • [21] Symplectic multi-level method for solving nonlinear optimal control problem
    Hai-jun Peng
    Qiang Gao
    Zhi-gang Wu
    Wan-xie Zhong
    Applied Mathematics and Mechanics, 2010, 31 : 1251 - 1260
  • [22] Symplectic multi-level method for solving nonlinear optimal control problem
    彭海军
    高强
    吴志刚
    钟万勰
    Applied Mathematics and Mechanics(English Edition), 2010, 31 (10) : 1251 - 1260
  • [23] Graph Selectors and the Max-Plus Finite Element Method
    McCaffrey, D.
    TROPICAL AND IDEMPOTENT MATHEMATICS, 2009, 495 : 281 - 292
  • [24] Application of an optimization problem in Max-Plus algebra to scheduling problems
    Bouquard, J. -L.
    Lente, C.
    Billaut, J. -C.
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (15) : 2064 - 2079
  • [25] On the Control of Max-plus Linear System in Dioid of Interval
    Zhang Yanan
    Zhang Zilong
    Tao Yuegang
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 4148 - 4152
  • [26] Max-Plus Stochastic Control and Risk-Sensitivity
    Wendell H. Fleming
    Hidehiro Kaise
    Shuenn-Jyi Sheu
    Applied Mathematics and Optimization, 2010, 62 : 81 - 144
  • [27] Max-Plus Stochastic Control and Risk-Sensitivity
    Fleming, Wendell H.
    Kaise, Hidehiro
    Sheu, Shuenn-Jyi
    APPLIED MATHEMATICS AND OPTIMIZATION, 2010, 62 (01): : 81 - 144
  • [28] Eigenproblem for optimal-node matrices in max-plus algebra
    Wang, Hui-li
    Wang, Xue-ping
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (08): : 1105 - 1113
  • [29] Optimal input design for uncertain max-plus linear systems
    Wang, Cailu
    Tao, Yuegang
    Yan, Huaicheng
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2018, 28 (16) : 4816 - 4830
  • [30] POLICY ITERATION AND THE MAX-PLUS FINITE ELEMENT METHOD
    Mccaffrey, D.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (06) : 2912 - 2929