Transforming Dye Molecules into Electrochemical Allies: Direct Red 80 as a Dual-Functional Electrolyte Additive for Dendrite-Free Aqueous Zinc-Ion Batteries

被引:0
|
作者
Wang Y. [1 ]
Guo J. [1 ]
Li S. [1 ]
Sun Y. [1 ]
Long Z. [1 ]
Shen L. [1 ]
Lai C. [1 ]
机构
[1] School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou
来源
ACS Applied Materials and Interfaces | 2023年 / 15卷 / 47期
基金
中国国家自然科学基金;
关键词
aqueous zinc ion batteries; dendrite-free Zn anode; DR80; dual-functional electrolyte additive; robust SEI; Zn(H[!sub]2[!/sub]O)[!sub]6[!/sub]][!sup]2+[!/sup;
D O I
10.1021/ACSAMI.3C12993
中图分类号
学科分类号
摘要
Despite the numerous advantages of abundant zinc resources, low redox potential, and affordability, aqueous zinc-ion batteries (AZIBs) currently face limitations due to dendritic growth and side reactions. This study explores the use of low-cost and efficient anionic dyes, specifically Direct Red 80 (DR80) as dual-functional electrolyte additives to enhance the electrochemical performance of AZIBs and facilitate the reuse of dye wastewater. Experimental and theory calculation results all demonstrate that the DR80 molecules readily adsorb onto the surface of the zinc anode, creating a stable and robust solid electrolyte interphase layer. This layer acts as a protective barrier, effectively mitigating H+ attacks and reducing both hydrogen evolution and corrosion reactions. Additionally, it covers any initial protrusions on the zinc anode, preventing the occurrence of the “tip-effect” phenomenon and limiting access of water to the zinc anode, thereby minimizing water decomposition. Moreover, the sulfonic acid groups of DR80 molecules displace some water molecules in [Zn(H2O)6]2+, disrupting the original solvent sheath and reducing water decomposition. Especially, using the DR80 additive, the Zn/Zn cell reaches an impressive cycle life of 1500 h at 2 mA cm-2@1 mAh cm-2. Given the low cost and widespread availability, this additive shows great potential in the future practical implementation of AZIBs. © 2023 American Chemical Society.
引用
收藏
页码:54510 / 54519
页数:9
相关论文
共 50 条
  • [21] Boosting Dendrite-Free Zinc Anode with Strongly Polar Functional Group Terminated Hydrogel Electrolyte for High-Safe Aqueous Zinc-Ion Batteries
    Li, Junyuan
    Zhang, Heng
    Liu, Ziming
    Du, Hao
    Wan, Hongxin
    Li, Xiangcai
    Yang, Jun
    Yan, Chao
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (02)
  • [22] Zincophilic Design for Highly Stable and Dendrite-Free Zinc Metal Anodes in Aqueous Zinc-Ion Batteries
    Zhang, Jingjing
    Mao, Longhua
    Xia, Zhigang
    Fan, Meiqiang
    Deng, Yaping
    Chen, Zhongwei
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [23] A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries
    Li, Bin
    Xue, Jing
    Han, Chao
    Liu, Na
    Ma, Kaixuan
    Zhang, Ruochen
    Wu, Xianwen
    Dai, Lei
    Wang, Ling
    He, Zhangxing
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 599 : 467 - 475
  • [24] Machine Learning-Assisted High-Donor-Number Electrolyte Additive Screening toward Construction of Dendrite-Free Aqueous Zinc-Ion Batteries
    Luo, Haoran
    Gou, Qianzhi
    Zheng, Yujie
    Wang, Kaixin
    Yuan, Ruduan
    Zhang, Sida
    Fang, Wei
    Luogu, Ziga
    Hu, Yuzhi
    Mei, Huaping
    Song, Bingye
    Sun, Kuan
    Wang, John
    Li, Meng
    ACS NANO, 2025, 19 (02) : 2427 - 2443
  • [25] Cationic Surfactant-Type Electrolyte Additive Enables Three-Dimensional Dendrite-Free Zinc Anode for Stable Zinc-Ion Batteries
    Bayaguud, Aruuhan
    Luo, Xiao
    Fu, Yanpeng
    Zhu, Changbao
    ACS ENERGY LETTERS, 2020, 5 (09) : 3012 - 3020
  • [26] Carboxymethyl Cellulose Gel Electrolyte Based on Hydrolyzed Keratin Modified for Dendrite-Free Zinc-Ion Batteries
    Zhang, Tianyun
    Wang, Yanci
    Li, Yu
    Li, Yuan
    Li, Xiangye
    Dou, Peiyao
    Ran, Fen
    LANGMUIR, 2024, 40 (40) : 21032 - 21040
  • [27] Dendrite-free and stable zinc-ion batteries enabled by a cation-anion synergistic regulation additive
    Fang, Tao
    Liu, Qihui
    Hu, Anyu
    Meng, Jinghan
    Fu, Yanpeng
    Shi, Zhicong
    JOURNAL OF POWER SOURCES, 2023, 581
  • [28] Laminated Zinc-Copper Electrodes as Reversible and Dendrite-Free Anodes for Aqueous Rechargeable Zinc-Ion Batteries
    Wang, Tian
    Yan, Daming
    Yu, Baozhu
    Zhou, Xingchen
    Ding, Xiangdong
    Yang, Yang
    Sun, Junjie
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (14) : 7477 - 7486
  • [29] Biomass Chitin Nanofiber Separators Proactively Stabilizing Zinc Anodes for Dendrite-Free Aqueous Zinc-Ion Batteries
    Wang, Qunhao
    Zhao, Jiangqi
    Zhang, Jian
    Li, Mei
    Tan, Feipeng
    Xue, Xiaolin
    Sui, Zengyan
    Zou, Yuefei
    Zhang, Xi
    Zhang, Wei
    Lu, Canhui
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (41)
  • [30] An effective cellulose triacetate interlayer to construct a dendrite-free zinc anode for advanced aqueous zinc-ion batteries
    Sheng, Rui
    Gu, Liping
    Wang, Zhiyuan
    Liu, Yang
    Gu, Yuanxiang
    Wang, Lei
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 124 : 157 - 164