Prediction of compressive strength of sustainable concrete using machine learning tools

被引:4
|
作者
Choudhary, Lokesh [1 ]
Sahu, Vaishali [1 ]
Dongre, Archanaa [2 ]
Garg, Aman [1 ,3 ]
机构
[1] NorthCap Univ, Dept Multidisciplinary Engn, Sect 23A, Gurugram 122017, Haryana, India
[2] Veermata Jijabai Technol Inst, Struct Engn Dept, HR Mahajani Marg, Mumbai 400019, Maharashtra, India
[3] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Intelligent Mfg Equipment & Technol, Wuhan 430074, Peoples R China
来源
COMPUTERS AND CONCRETE | 2024年 / 33卷 / 02期
关键词
compressive strength prediction; GBM; machine learning; sensitivity analysis; ternary geopolymer concrete; BLAST-FURNACE SLAG; FLY-ASH; MODEL; GEOPOLYMERS; PERFORMANCE;
D O I
10.12989/cac.2024.33.2.137
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The technique of experimentally determining concrete's compressive strength for a given mix design is timeconsuming and difficult. The goal of the current work is to propose a best working predictive model based on different machine learning algorithms such as Gradient Boosting Machine (GBM), Stacked Ensemble (SE), Distributed Random Forest (DRF), Extremely Randomized Trees (XRT), Generalized Linear Model (GLM), and Deep Learning (DL) that can forecast the compressive strength of ternary geopolymer concrete mix without carrying out any experimental procedure. A geopolymer mix uses supplementary cementitious materials obtained as industrial by-products instead of cement. The input variables used for assessing the best machine learning algorithm not only include individual ingredient quantities, but molarity of the alkali activator and age of testing as well. Myriad statistical parameters used to measure the effectiveness of the models in forecasting the compressive strength of ternary geopolymer concrete mix, it has been found that GBM performs better than all other algorithms. A sensitivity analysis carried out towards the end of the study suggests that GBM model predicts results close to the experimental conditions with an accuracy between 95.6 % to 98.2 % for testing and training datasets.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 50 条
  • [41] Prediction of compressive strength of high-performance concrete (HPC) using machine learning algorithms
    Imran, Muhammad
    Raza, Ali
    Touqeer, Muhammad
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2024, 7 (03) : 1881 - 1894
  • [42] Compressive Strength Prediction of Concrete Under Sulfate Attack Using Coupled Machine Learning Methods
    Libing Jin
    Peng Liu
    Tai Fan
    Tian Wu
    Yuhang Wang
    Qiang Wu
    Pengfei Xue
    Pin Zhou
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2025, 49 (2) : 1577 - 1590
  • [43] Prediction of compressive strength of self-compacting concrete using four machine learning technics
    El Asri, Yousef
    Ben Aicha, Mouhcine
    Zaher, Mounir
    Alaoui, Adil Hafidi
    MATERIALS TODAY-PROCEEDINGS, 2022, 57 : 859 - 866
  • [44] Prediction of compressive strength of recycled aggregate concrete using machine learning and Bayesian optimization methods
    Zhang, Xinyi
    Dai, Chengyuan
    Li, Weiyu
    Chen, Yang
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [45] STUDY ON MACHINE LEARNING METHODS FOR COMPRESSIVE STRENGTH PREDICTION USING CONCRETE MANUFACTURING CONTROL DATA
    Akabane, Shun-Nosuke
    Kuroda, Yasuhiro
    AIJ Journal of Technology and Design, 2024, 30 (76) : 1606 - 1611
  • [46] Prediction and uncertainty quantification of compressive strength of high-strength concrete using optimized machine learning algorithms
    Han, Bing
    Wu, Yanqi
    Liu, Lulu
    STRUCTURAL CONCRETE, 2022, 23 (06) : 3772 - 3785
  • [47] Concrete compressive strength prediction using an explainable boosting machine model
    Liu, Gaoyang
    Sun, Bochao
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 18
  • [48] Compressive strength prediction of sustainable concrete incorporating rice husk ash (RHA) using hybrid machine learning algorithms and parametric analyses
    Kashem, Abul
    Karim, Rezaul
    Das, Pobithra
    Datta, Shuvo Dip
    Alharthai, Mohammad
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20
  • [49] Prediction of Uniaxial Compressive Strength of Rock Using Machine Learning
    Dadhich S.
    Sharma J.K.
    Madhira M.
    Journal of The Institution of Engineers (India): Series A, 2022, 103 (04): : 1209 - 1224
  • [50] MACHINE LEARNING BASED PREDICTION OF COMPRESSIVE STRENGTH IN CONCRETE INCORPORATING SYNHTHETIC FIBERS
    Erdem, R. Tugrul
    Ciftcioglu, Aybike Ozyuksel
    Gucuyen, Engin
    Kantar, Erkan
    REVISTA ROMANA DE MATERIALE-ROMANIAN JOURNAL OF MATERIALS, 2024, 54 (02): : 131 - 139