Complexity of 2-Rainbow Total Domination Problem

被引:0
|
作者
Sumenjak, Tadeja Kraner [1 ,2 ]
Tepeh, Aleksandra [2 ,3 ]
机构
[1] Univ Maribor, FALS, Pivola 10, Hoce 2311, Slovenia
[2] Inst Math Phys & Mech, Jadranska ul 19, Ljubljana 1000, Slovenia
[3] Univ Maribor, FEECS, Koroska cesta 46, Maribor 2000, Slovenia
关键词
Domination; Rainbow domination; Rooted product; NP-complete; RAINBOW DOMINATION;
D O I
10.1007/s40840-024-01747-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we extend the findings of recent studies on k-rainbow total domination by placing our focus on its computational complexity aspects. We show that the problem of determining whether a graph has a 2-rainbow total dominating function of a given weight is NP-complete. This complexity result holds even when restricted to planar graphs. Along the way tight bounds for the k-rainbow total domination number of rooted product graphs are established. In addition, we obtain the closed formula for the k-rainbow total domination number of the corona product G & lowast;H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G*H$$\end{document}, provided that H has enough vertices.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A note on stratified domination and 2-rainbow domination in graphs
    Aldemir, Mehmet Serif
    Ediz, Suleyman
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2011, 13 (7-8): : 833 - 836
  • [22] Note on 2-rainbow domination and Roman domination in graphs
    Wu, Yunjian
    Xing, Huaming
    APPLIED MATHEMATICS LETTERS, 2010, 23 (06) : 706 - 709
  • [23] 2-Rainbow domination number of Cartesian products: and
    Stepien, Zofia
    Zwierzchowski, Maciej
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (04) : 748 - 755
  • [24] Changing and Unchanging 2-Rainbow Independent Domination
    Shi, Xiaolong
    Wu, Pu
    Shao, Zehui
    Samodivkin, Vladimir
    Sheikholeslami, Seyed Mahmoud
    Soroudi, M.
    Wang, Shaohui
    IEEE ACCESS, 2019, 7 : 72604 - 72612
  • [25] On 2-rainbow domination of generalized Petersen graphs
    Shao, Zehui
    Jiang, Huiqin
    Wu, Pu
    Wang, Shaohui
    Zerovnik, Janez
    Zhang, Xiaosong
    Liu, Jia-Bao
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 370 - 384
  • [26] Bounds on the 2-Rainbow Domination Number of Graphs
    Wu, Yunjian
    Rad, Nader Jafari
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 1125 - 1133
  • [27] Difference between 2-rainbow domination and Roman domination in graphs
    Fujita, Shinya
    Furuya, Michitaka
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (06) : 806 - 812
  • [28] Bounds on the 2-Rainbow Domination Number of Graphs
    Yunjian Wu
    Nader Jafari Rad
    Graphs and Combinatorics, 2013, 29 : 1125 - 1133
  • [29] Critical concept for 2-rainbow domination in graphs
    Rad, Nader Jafari
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 51 : 49 - 60
  • [30] 2-rainbow domination number of the subdivision of graphs
    Salkhori, Rostam Yarke
    Vatandoost, Ebrahim
    Behtoei, Ali
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,