共 36 条
- [11] Ramesh A, Ankem S., The effect of grain size on the ambient temperature creep deformation behavior of a beta Ti-14.8 V alloy, Metall. Mater. Trans, 33A, (2002)
- [12] Tanaka H, Yamada T, Sato E, Et al., Distinguishing the ambient-temperature creep region in a deformation mechanism map of annealed CP-Ti, Scripta Mater, 54, (2006)
- [13] Kassner M E, Smith K., Low temperature creep plasticity, J. Mater. Res. Technol, 3, (2014)
- [14] Xi G Q, Lei J F, Qiu J K, Et al., A semi-quantitative explanation of the cold dwell effect in titanium alloys, Mater. Des, 194, (2020)
- [15] Zhang Z., Micromechanistic study of textured multiphase polycrystals for resisting cold dwell fatigue, Acta Mater, 156, (2018)
- [16] Bache M R., A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions, Int. J. Fatigue, 25, (2003)
- [17] Qiu J K, Ma Y J, Lei J F, Et al., A comparative study on dwell fatigue of Ti-6Al-2Sn-4Zr-xMo (x=2 to 6) alloys on a microstructure-normalized basis, Metall. Mater. Trans, 45A, (2014)
- [18] Sun C Q, Li Y Q, Xu K L, Et al., Effects of intermittent loading time and stress ratio on dwell fatigue behavior of titanium alloy Ti-6Al-4V ELI used in deep-sea submersibles, J. Mater. Sci. Technol, 77, (2021)
- [19] Evans W J, Gostelow C R., The effect of hold time on the fatigue properties of a β-processed titanium alloy, Metall. Trans, 10A, (1979)
- [20] Gerland M, Lefranc P, Doquet V, Et al., Deformation and damage mechanisms in an α/β 6242 Ti alloy in fatigue, dwell-fatigue and creep at room temperature. Influence of internal hydrogen, Mater. Sci. Eng, 507A, (2009)