Laser powder bed fusion of AISI 316L lattice structures for biomedical applications

被引:4
|
作者
Lannunziata E. [1 ]
Saboori A. [1 ]
Galati M. [1 ]
Iuliano L. [1 ]
机构
[1] Integrated Additive Manufacturing Center, Department Management and Production Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, Torino
来源
关键词
Additive manufacturing; Laser powder bed fusion; Lattice structures; Mechanical performance;
D O I
10.1016/j.matpr.2022.09.267
中图分类号
学科分类号
摘要
Additive Manufacturing (AM) is a class of manufacturing technologies in which a complex part can be built directly in its final or semi-final shape through a layerwise process. These technologies enable the production of engineered materials with a high level of complexity, of which lattice structures are one of the most promising structures for several applications. On the other hand, cellular structures have been extensively studied over the last few decades, mainly owing to their unique performances in energy absorption, thermal and electrical conductivity, and acoustic. The biggest challenge in cellular solids is the replication of their cell geometries with complex shapes and often small dimensions. Therefore, AM methods that facilitate the fabrication of nature-inspired geometries devices could play a key role in developing new cellular structures for various applications. Hence, the present paper aims to manufacture and characterise AISI 316 L lattice structures produced by the laser powder bed fusion process. Two different types of structures are considered: the strut-based based on strut elements and the triply periodic minimal surfaces generated from trigonometric functions. Statistic compression tests were performed to investigate the influence of cell geometries, unit cell size, relative density, and volume fraction on mechanical properties, such as Youngs’ modulus, ultimate compressive strength, and the amount of energy absorbed. © 2022
引用
收藏
页码:345 / 351
页数:6
相关论文
共 50 条
  • [11] Effect of Hot Isostatic Pressing of Water Atomized AISI 316L Manufactured by Laser Powder Bed Fusion
    Rodrigues, Pedro Henrique Eca
    Unti, Luiz Fernando Kultz
    Mariani, Fabio Edson
    Gargarella, Piter
    Cintho, Osvaldo Mitsuyuki
    Ramirez, Antonio J.
    Zilnyk, Kahl
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2023, 26
  • [12] INFLUENCE OF MACHINE TYPE AND POWDER BATCH DURING LASER-BASED POWDER BED FUSION (L-PBF) OF AISI 316L
    Greco, Sebastian
    Gutzeit, Kevin
    Hotz, Hendrik
    Schmidt, Marc
    Zimmermann, Marco
    Kirsch, Benjamin
    Aurich, Jan C.
    PROCEEDINGS OF THE ASME 2021 16TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE (MSEC2021), VOL 1, 2021,
  • [13] Hydrogen Trapping in Laser Powder Bed Fusion 316L Stainless Steel
    Metalnikov, Polina
    Ben-Hamu, Guy
    Eliezer, Dan
    METALS, 2022, 12 (10)
  • [14] Effect of Thermal Treatment on Corrosion Behavior of AISI 316L Stainless Steel Manufactured by Laser Powder Bed Fusion
    Andreatta, Francesco
    Lanzutti, Alex
    Revilla, Reynier, I
    Vaglio, Emanuele
    Totis, Giovanni
    Sortino, Marco
    de Graeve, Iris
    Fedrizzi, Lorenzo
    MATERIALS, 2022, 15 (19)
  • [15] Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion
    Ulbricht, Alexander
    Calderon, Luis Alexander Avila
    Sommer, Konstantin
    Mohr, Gunther
    Evans, Alexander
    Skrotzki, Birgit
    Bruno, Giovanni
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (12)
  • [16] Grain boundary behaviour and impact fractography of cryogenic treated AISI 316l manufactured by laser powder bed fusion
    Vinothraj, U. T.
    Xavior, M. Anthony
    MATERIALS LETTERS, 2024, 377
  • [17] Magnetically driven internal finishing of AISI 316L stainless steel tubes generated by laser powder bed fusion
    Zhang, Jiong
    Wang, Hao
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 76 : 155 - 166
  • [18] Vibration-assisted micro milling of AISI 316L produced by laser-based powder bed fusion
    Greco, Sebastian
    Klauer, Katja
    Kirsch, Benjamin
    Aurich, Jan C.
    JOURNAL OF MANUFACTURING PROCESSES, 2021, 71 : 298 - 305
  • [19] Applications of Wrought Austenitic Stainless Steel Corrosion Testing to Laser Powder Bed Fusion 316L
    Macatangay, Duane Armell T.
    Conrades, Jenna M.
    Brunner, Keegan L.
    Kelly, Robert G.
    CORROSION, 2022, 78 (01) : 13 - 24
  • [20] Coloration of the AISI 304 and AISI 316L stainless steels for biomedical applications
    Padilla Jimenez, Luis Fernando
    Parada Gamboa, Nayla Julieth
    Guerrero Bermudez, Jader Enrique
    Viejo Abrante, Fernando
    Coy Echeverria, Ana Emilse
    REVISTA ITECKNE, 2013, 10 (02): : 229 - 241