Decompositions of Various Complete Graphs into Isomorphic Copies of 4-cycles with Three Pendant Edges

被引:0
|
作者
Abueida, Atif [1 ]
Alzahrani, Rabab [1 ]
机构
[1] Department of Mathematics, University of Dayton, 300 College Park, Dayton,OH,45469-2316, United States
来源
Journal of Combinatorial Mathematics and Combinatorial Computing | 2019年 / 111卷
关键词
Graph theory;
D O I
暂无
中图分类号
学科分类号
摘要
An H-decomposition of a graph G is a partition of the edges of G into copies isomorphic to H. When the decomposition is not feasible, one looks for the best possible by minimizing; the number of unused edges (leave of a packing), or the number of reused edges (padding of a covering). We consider the H-decomposition, packing, and covering of the complete graphs and complete bipartite graphs, where H is a 4-cycle with three pendant edges. © 2019 Charles Babbage Research Centre. All rights reserved.
引用
收藏
页码:53 / 64
相关论文
共 50 条
  • [41] Linear Coloring of Planar Graphs Without 4-Cycles
    Wang, Weifan
    Wang, Yiqiao
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 1113 - 1124
  • [42] Linear Coloring of Planar Graphs Without 4-Cycles
    Weifan Wang
    Yiqiao Wang
    Graphs and Combinatorics, 2013, 29 : 1113 - 1124
  • [43] Decomposing Graphs of High Minimum Degree into 4-Cycles
    Bryant, Darryn
    Cavenagh, Nicholas J.
    JOURNAL OF GRAPH THEORY, 2015, 79 (03) : 167 - 177
  • [44] Classification of reconfiguration graphs of shortest path graphs with no induced 4-cycles
    Asplund, John
    Werner, Brett
    DISCRETE MATHEMATICS, 2020, 343 (0I)
  • [45] Edge colourings of embedded graphs without 4-cycles or chordal-4-cycles
    Hou, Jianfeng
    Liu, Bin
    Liu, Guizhen
    Wang, Jihui
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (13) : 2880 - 2886
  • [46] Acyclic 4-Choosability of Planar Graphs Without 4-Cycles
    Sun, Yingcai
    Chen, Min
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) : 161 - 178
  • [47] PLANAR GRAPHS WITHOUT TRIANGULAR 4-CYCLES ARE 4-CHOOSABLE
    Borodin, O., V
    Ivanova, A. O.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2008, 5 : 75 - 79
  • [48] Decompositions of complete equipartite graphs into cycles of lengths 3 and 6
    Paulraja, P.
    Srimathi, R.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2020, 78 : 297 - 313
  • [49] Decompositions of complete tripartite graphs into cycles of lengths 3 and 6
    Ganesamurthy, S.
    Paulraja, P.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 73 : 220 - 241
  • [50] Cycle decompositions III: Complete graphs and fixed length cycles
    Sajna, M
    JOURNAL OF COMBINATORIAL DESIGNS, 2002, 10 (01) : 27 - 78