Trusted Task Offloading in Vehicular Edge Computing Networks: A Reinforcement Learning Based Solution

被引:0
|
作者
Zhang, Lushi [1 ]
Guo, Hongzhi [1 ]
Zhou, Xiaoyi [1 ]
Liu, Jiajia [1 ]
机构
[1] Northwestern Polytech Univ, Sch Cybersecur, Xian 710072, Shaanxi, Peoples R China
关键词
mobile edge computing; vehicular networks; trust evaluation; recommend trust; reinforcement learning; CHALLENGES; FRAMEWORK;
D O I
10.1109/GLOBECOM54140.2023.10437191
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mobile edge computing (MEC) has emerged as a promising approach to address the time-sensitive requirements of mobile Internet of Vehicles (IoVs) systems. Unfortunately, the current deployment density of roadside units (RSUs) is relatively sparse, and the direct V2I communication coverage is limited, making it impossible to meet the communication and computing requirements of all vehicles. There is an urgent need for V2V communication to assist V2I communication, which can achieve a wider coverage of RSUs, a diversified selection of task processing locations, and even load balancing between RSUs. However, V2V communication also faces a series of challenges. On the one hand, due to the sparsity, time-varying, and high-speed mobility of vehicle nodes in IoVs, the selection of collaborative communication paths becomes more difficult. On the other hand, there are inevitably malicious vehicles in IoVs, and how to achieve efficient task processing while ensuring privacy and driving safety is also a problem worth studying. Existing research generally optimized the delay of direct V2I task offloading, ignoring the necessity of V2V-assisted communication and the presence of malicious communication nodes. To address the above challenges, we present a vehicular edge computing network structure with multiple communication modes, including V2V, V2I, etc, and use a recommended trust model to analyze the trust degree between the nodes in IoVs. Then, we discuss the issue of trusted task offloading for IoVs and propose a Deep Deterministic Policy Gradient (DDPG) scheme. The numerical results indicate that our proposed strategy outperforms current methods in terms of task offload latency and credibility.
引用
收藏
页码:6711 / 6716
页数:6
相关论文
共 50 条
  • [41] Deep Learning-Based Task Discrimination Offloading in Vehicular Edge Computing
    Zhang J.
    Qi K.
    Zhang Q.
    Sun L.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2024, 53 (01): : 29 - 39
  • [42] An RSU-crossed dependent task offloading scheme for vehicular edge computing based on deep reinforcement learning
    Bi, Xiang
    Shi, Jianing
    Zhang, Benhong
    Lyu, Zengwei
    Huang, Lingjie
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2023, 41 (04) : 244 - 256
  • [43] Federated deep reinforcement learning for task offloading and resource allocation in mobile edge computing-assisted vehicular networks
    Zhao, Xu
    Wu, Yichuan
    Zhao, Tianhao
    Wang, Feiyu
    Li, Maozhen
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 229
  • [44] Learning Based Energy Efficient Task Offloading for Vehicular Collaborative Edge Computing
    Qin, Peng
    Fu, Yang
    Tang, Guoming
    Zhao, Xiongwen
    Geng, Suiyan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (08) : 8398 - 8413
  • [45] Adaptive Learning-Based Task Offloading for Vehicular Edge Computing Systems
    Sun, Yuxuan
    Guo, Xueying
    Song, Jinhui
    Zhou, Sheng
    Jiang, Zhiyuan
    Liu, Xin
    Niu, Zhisheng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (04) : 3061 - 3074
  • [46] Task offloading for vehicular edge computing with imperfect CSI: A deep reinforcement approach
    Wu, Yuxin
    Xia, Junjuan
    Gao, Chongzhi
    Ou, Jiangtao
    Fan, Chengyuan
    Ou, Jianghong
    Fan, Dahua
    PHYSICAL COMMUNICATION, 2022, 55
  • [47] Deep-Reinforcement-Learning-Based Computation Offloading in UAV-Assisted Vehicular Edge Computing Networks
    Yan, Junjie
    Zhao, Xiaohui
    Li, Zan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19882 - 19897
  • [48] Deep Reinforcement Learning-Based Adaptive Computation Offloading and Power Allocation in Vehicular Edge Computing Networks
    Qiu, Bin
    Wang, Yunxiao
    Xiao, Hailin
    Zhang, Zhongshan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (10) : 13339 - 13349
  • [49] Deep Reinforcement Learning-based Task Offloading in Satellite-Terrestrial Edge Computing Networks
    Zhu, Dali
    Liu, Haitao
    Li, Ting
    Sun, Jiyan
    Liang, Jie
    Zhang, Hangsheng
    Geng, Liru
    Liu, Yudong
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [50] Deep Reinforcement Learning for Energy-Efficient Task Offloading in Cooperative Vehicular Edge Networks
    Agbaje, Paul
    Nwafor, Ebelechukwu
    Olufowobi, Habeeb
    2023 IEEE 21ST INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, INDIN, 2023,