Preventing Thermal Runaway Propagation in Lithium-ion Batteries using a Passive Liquid Housing

被引:3
|
作者
Lee, Seungmin [1 ]
Kwon, Minseo [1 ]
Kim, Youngsik [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Ulsan 44919, South Korea
关键词
cylindrical lithium-ion battery module; liquid housing; water cooling; thermal runaway propagation; fire prevention; thermal management; battery simulation; PERFORMANCE;
D O I
10.1149/1945-7111/ad2d3f
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-ion batteries (LIBs), due to their high energy density, long lifespan, and low self-discharge, are widely used in various applications. However, they are challenged by the risk of thermal runaway and thermal degradation, so they require effective thermal management system. In this study, we investigated the application of a water-inclusive housing structure to battery modules to prevent thermal runaway propagation and enhance thermal management. The thermal and electrochemical behaviors of the batteries were analyzed using the ANSYS Fluent simulator. Through simulations, we determined the optimal cell spacing of the water-housing module that maximizes energy density while ensuring thermal stability. Our results indicate that a water housing module composed of 20 cylindrical cells(10s2p) with a cell spacing of 4 mm can effectively prevent thermal runaway propagation and reduce cell temperature by approximately 60% during normal discharge, while maintaining 80% of the volumetric energy density of a conventional module. Furthermore, the reliability of our simulation results was validated through thermal runaway and normal discharge tests. The proposed water housing method holds great promise in preventing thermal runaway propagation and enhancing thermal stability of LIB modules, thereby mitigating the risk of fire and thermal degradation during normal discharge.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Study on Thermal Runaway Propagation Characteristics and Cooling Inhibition Mechanism of Lithium-Ion Batteries
    Zheng, Yi
    Chen, Shuo
    Peng, Shengtao
    Feng, Xi
    Wang, Chun
    Zhang, Guangwen
    Zhao, Xiangdi
    FIRE TECHNOLOGY, 2025,
  • [22] Study on the Thermal Runaway and Its Propagation of Lithium-Ion Batteries Under Low Pressure
    Wang, Huaibin
    Du, Zhiming
    Liu, Ling
    Zhang, Zelin
    Hao, Jinyuan
    Wang, Qinzheng
    Wang, Shuang
    FIRE TECHNOLOGY, 2020, 56 (06) : 2427 - 2440
  • [23] Critical conditions for the thermal runaway propagation of lithium-ion batteries in air and argon environments
    Zhu, Yu
    Wang, Zhirong
    Bian, Huan
    Wang, Junling
    Bai, Wei
    Gao, Tianfeng
    Bai, Jinlong
    Zhou, Yuxin
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (23) : 13699 - 13710
  • [24] Investigation into the effects of emergency spray on thermal runaway propagation within lithium-ion batteries
    Huang, Yuqi
    Lu, Jiajun
    Lu, Yiji
    Liu, Binghe
    JOURNAL OF ENERGY STORAGE, 2023, 66
  • [25] Critical conditions for the thermal runaway propagation of lithium-ion batteries in air and argon environments
    Yu Zhu
    Zhirong Wang
    Huan Bian
    Junling Wang
    Wei Bai
    Tianfeng Gao
    Jinlong Bai
    Yuxin Zhou
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 13699 - 13710
  • [26] Influence of inhomogeneous state of charge distributions on thermal runaway propagation in lithium-ion batteries
    Theiler, Michael
    Baumann, Alexander
    Endisch, Christian
    JOURNAL OF ENERGY STORAGE, 2024, 95
  • [27] Preventing thermal runaway propagation in lithium-ion batteries: Model-based optimization of interstitial heat-absorbing thermal barriers
    Menz, Fabian
    Bausch, Bruno
    Barillas, Joaquin Klee
    Boese, Olaf
    Danzer, Michael A.
    Hoelzle, Markus
    JOURNAL OF POWER SOURCES, 2023, 584
  • [28] Preventing thermal runaway in lithium-ion batteries with nano-porous structures: A critical review
    Sarkon, Garshasp Keyvan
    Hurdoganoglu, Dogus
    Eyyamoglu, Berke
    Shefik, Ali
    Sahmani, Saeid
    Solyali, Davut
    Noii, Nima
    Safaei, Babak
    JOURNAL OF POWER SOURCES, 2025, 641
  • [29] Preventing effect of liquid nitrogen on the thermal runaway propagation in 18650 lithium ion battery modules
    Huang, Zonghou
    Zhang, Yue
    Song, Laifeng
    Duan, Qiangling
    Sun, Jinhua
    Mei, Wenxin
    Wang, Qingsong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 168 : 42 - 53
  • [30] Thermal Runaway of Lithium-Ion Batteries Triggered by Electromagnetic Interference
    Dubois, Eric Ravindranath
    Kherbouchi, Hocine
    Bosson, Joel
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2020, 62 (05) : 2096 - 2100