This paper is to look for bi-Frobenius algebra structures on quantum complete intersections over field k. We find a class of comultiplications, such that if -1 is an element of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{-1}\in k$$\end{document}, then a quantum complete intersection becomes a bi-Frobenius algebra with comultiplication of this form if and only if all the parameters qij = +/- 1. Also, it is proved that if -1 is an element of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{-1}\in k$$\end{document} then a quantum exterior algebra in two variables admits a bi-Frobenius algebra structure if and only if the parameter q = +/- 1. While if -1 is not an element of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{-1}\notin k$$\end{document}, then the exterior algebra with two variables admits no bi-Frobenius algebra structures. We prove that the quantum complete intersections admit a bialgebra structure if and only if it admits a Hopf algebra structure, if and only if it is commutative, the characteristic of k is a prime p, and every ai a power of p. This also provides a large class of examples of bi-Frobenius algebras which are not bialgebras (and hence not Hopf algebras). In commutative case, other two comultiplications on complete intersection rings are given, such that they admit non-isomorphic bi-Frobenius algebra structures.