Evaluation of the long-term performance of high-performance concrete produced with blended river sand/sea sand and high-volume GGBFS

被引:1
|
作者
Vo, Duy-Hai [1 ]
Doan, Vinh-Phuc [1 ]
Nguyen, May Huu [2 ]
Nguyen, Tan-Khoa [1 ]
机构
[1] Univ Danang, Dept Civil Engn, Danang Univ Technol & Educ, 48 Cao Thang St, Danang 550000, Vietnam
[2] Hiroshima Univ, Grad Sch Adv Sci & Engn, Civil & Environm Engn Program, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 7398527, Japan
关键词
High-performance concrete; Sea sand; Durability; High-volume GGBFS; BLAST-FURNACE SLAG; MECHANICAL-PROPERTIES; COMPRESSIVE STRENGTH; CHLORIDE RESISTANCE; FLY-ASH; SEAWATER; DURABILITY; SULFATE; CEMENT; MICROSTRUCTURE;
D O I
10.1007/s10163-024-01977-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The large amount of natural aggregate and cement in concrete production caused the exhaustion of natural resources and environmental impacts. Replacing the natural aggregate and cement using alternative materials in concrete production is necessary. The study aims to present the mechanical properties and durability of high-performance concrete produced with high-volume ground granulated blast furnace slag (GGBFS) and river sand/sea sand blended (S-HPC). The concrete mixtures were designed with a constant ratio of river sand and sea sand blending at 60:40 and various GGBFS content as partial cement replacement of 30%, 50%, and 70%. The mechanical strength and durability properties were observed up to 365 days of curing age. According to the findings, the S-HPC presented a good compressive strength achievement in a range of 73.2-83.9 MPa and UPV value of 4662-4860 m/s at 365 days of curing age. The washed sea sand concrete mixture presented a higher compressive strength and better durability performance than non-washed sea sand. Incorporating with GGBFS into S-HPC by up to 50% significantly improved concrete samples' mechanical performance, durability, and microstructure. Using GGBFS reduced the current records and delayed the initiation corrosion time of concrete samples.
引用
收藏
页码:2393 / 2412
页数:20
相关论文
共 50 条
  • [41] Study on long-term deformation performance of high performance concrete used in bridge
    College of Civil Engineering, Chongqing University, Chongqing 400045, China
    J. Inf. Comput. Sci., 2012, 14 (4131-4139):
  • [42] Compressive Performance and Damage Analysis of Coral Seawater Sea Sand Concrete After High Temperature
    Liu, Jing
    Hu, Qiang
    Chen, Yuliang
    Liang, Xin
    FIRE AND MATERIALS, 2025,
  • [43] Development and mechanical behaviour of ultra-high-performance seawater sea-sand concrete
    Teng, Jin-Guang
    Xiang, Yu
    Yu, Tao
    Fang, Zhi
    ADVANCES IN STRUCTURAL ENGINEERING, 2019, 22 (14) : 3100 - 3120
  • [44] Evaluation of the long-term durability of high-performance polyimide adhesives for bonding titanium
    Xu, SY
    Guo, S
    Dillard, DA
    JOURNAL OF ADHESION, 2004, 80 (12): : 1153 - 1172
  • [45] A review on ultra-high performance seawater sea sand concrete: Hydration, microstructure and properties
    Liu, Xinghao
    Chen, Zaixian
    Yu, Zicong
    Chen, Pang
    Zhang, Yingzi
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 438
  • [46] Performance of high-volume fly ash concrete in marine environment
    Moffatt, Edward G.
    Thomas, Michael D. A.
    Fahim, Andrew
    CEMENT AND CONCRETE RESEARCH, 2017, 102 : 127 - 135
  • [47] Performance of high-volume fly ash concrete in hot weather
    Mehta, RK
    INNOVATIONS IN DESIGN WITH EMPHASIS ON SEISMIC, WIND, AND ENVIRONMENTAL LOADING: QUALITY CONTROL AND INNOVATIONS IN MATERIALS/HOT-WEATHER CONCRETING, 2002, 209 : 47 - 52
  • [48] Hybrid fibre reinforced polymer and seawater sea sand concrete structures: A systematic review on short-term and long-term structural performance
    Bazli, Milad
    Heitzmann, Michael
    Hernandez, Byron Villacorta
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 301
  • [49] Improvement of physical and mechanical properties of high-performance sand concrete with different silica fume content
    Chalah, Kaci
    Hammas, Aghiles
    Benmounah, Abdelbaki
    ADVANCES IN CIVIL AND ARCHITECTURAL ENGINEERING, 2024, 15 (29): : 19 - 32
  • [50] Evolution and mechanism on shrinkage of high-performance concrete with full aeolian sand cured by superabsorbent polymer
    Zhu, Linlin
    Zheng, Mulian
    Zhang, Wei
    Chen, Wang
    Ou, Zhongwen
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 400