Improved random forest algorithms for increasing the accuracy of forest aboveground biomass estimation using Sentinel-2 imagery

被引:15
|
作者
Zhang, Xiaoli [1 ]
Shen, Hanwen [2 ]
Huang, Tianbao [1 ]
Wu, Yong [1 ]
Guo, Binbing [1 ]
Liu, Zhi [1 ]
Luo, Hongbin [1 ]
Tang, Jing [1 ]
Zhou, Hang [1 ]
Wang, Leiguang [1 ,3 ]
Xu, Weiheng [1 ,3 ]
Ou, Guanglong [1 ,4 ,5 ]
机构
[1] Southwest Forestry Univ, Key Lab Forest Resources Conservat & Utilizat Sout, Minist Educ, Kunming 650233, Peoples R China
[2] Yunnan Inst Forest Inventory & Planning, Kunming, Peoples R China
[3] Southwest Forestry Univ, Inst Big Data & Artificial Intelligence, Kunming, Peoples R China
[4] Southwest Forestry Univ, Key Lab, Natl Forestry & Grassland Adm Biodivers Conservat, Kunming 650233, Peoples R China
[5] Southwest Forestry Univ, Kunming 650233, Peoples R China
关键词
Random Forest (RF); Regularized Random Forest (RRF); Quantile Random Forest (QRF); Forest aboveground biomass (AGB) estimation; Sentinel-2; imagery; LEAF-AREA INDEX; LANDSAT TM DATA; TROPICAL FOREST; VEGETATION INDEX; MODIS; NDVI; SELECTION; TEXTURE; LIDAR;
D O I
10.1016/j.ecolind.2024.111752
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
A simpler, unbiased, and comprehensive random forest (RF) model is needed to improve the accuracy of aboveground biomass (AGB) estimation. In this study, data were obtained from 128 sample plots of Pinus yunnanensis forest located in Chuxiong prefecture, Yunnan province, China. Sentinel-2 imagery data were applied to extract the important predictors of forest AGB, which were screened using the Boruta algorithm. We compared the fitting performance of two modified random forest models - regularized random forest (RRF) and quantile random forest (QRF) - with the random forest model. Moreover, we combined the smallest mean error of each quantile model as the best QRF (QRFb). The result showed: (1) Window sizes of 3 x 3 pixels and 5 x 5 pixels demonstrated greater sensitivity and suitability for estimating AGB than the 7 x 7 pixels window size. Enhanced vegetation indices derived from Red Edge 1 (B5) and Near-Infrared bands (B8A) were strongly correlated with AGB, indicating the heightened sensitivity of B5 and B8A bands to biomass and their potential in AGB estimation. (2) The RRF model outperformed both the standard RF and QRF in fitting performance, with an R2 of 0.56 and RMSE 57.14 Mg/ha. (3) The QRFb model exhibited the highest R2 of 0.88 and lowest RMSE of 29.56 Mg/ha, significantly reducing overestimation and underestimation issues. The modified RF regression supplies new insights into improving forest AGB estimation, which will be helpful for future research addressing carbon cycling.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Synergistic Use of Sentinel-1 and Sentinel-2 Based on Different Preprocessing for Predicting Forest Aboveground Biomass
    Fang, Gengsheng
    Yu, Hangyuan
    Fang, Luming
    Zheng, Xinyu
    FORESTS, 2023, 14 (08):
  • [22] Estimation of forest aboveground biomass using combination of Landsat 8 and Sentinel-1A data with random forest regression algorithm in Himalayan Foothills
    Saurabh Purohit
    S. P. Aggarwal
    N. R. Patel
    Tropical Ecology, 2021, 62 : 288 - 300
  • [23] Estimation of forest aboveground biomass using combination of Landsat 8 and Sentinel-1A data with random forest regression algorithm in Himalayan Foothills
    Purohit, Saurabh
    Aggarwal, S. P.
    Patel, N. R.
    TROPICAL ECOLOGY, 2021, 62 (02) : 288 - 300
  • [24] Estimating Aboveground Biomass of Two Different Forest Types in Myanmar from Sentinel-2 Data with Machine Learning and Geostatistical Algorithms
    Wai, Phyo
    Su, Huiyi
    Li, Mingshi
    REMOTE SENSING, 2022, 14 (09)
  • [25] Forage Biomass Estimation Using Sentinel-2 Imagery at High Latitudes
    Peng, Junxiang
    Zeiner, Niklas
    Parsons, David
    Feret, Jean-Baptiste
    Soderstrom, Mats
    Morel, Julien
    REMOTE SENSING, 2023, 15 (09)
  • [26] USING SENTINEL-2 AND STACKING REGRESSORS FOR FOREST HEIGHT ESTIMATION
    Pereira-Pires, Joao E.
    Silva, Joao M. N.
    Moral, Andre
    Fonseca, Jose M.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1561 - 1564
  • [27] Aboveground forest biomass derived using multiple dates of WorldView-2 stereo-imagery: quantifying the improvement in estimation accuracy
    Vastaranta, Mikko
    Yu, Xiaowei
    Luoma, Ville
    Karjalainen, Mika
    Saarinen, Ninni
    Wulder, Michael A.
    White, Joanne C.
    Persson, Henrik J.
    Hollaus, Markus
    Yrttimaa, Tuomas
    Holopainen, Markus
    Hyyppae, Juha
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (23) : 8766 - 8783
  • [28] Estimation of Forest Aboveground Biomass of Two Major Conifers in Ibaraki Prefecture, Japan, from PALSAR-2 and Sentinel-2 Data
    Li, Hantao
    Kato, Tomomichi
    Hayashi, Masato
    Wu, Lan
    REMOTE SENSING, 2022, 14 (03)
  • [29] Estimation of forest cover change using Sentinel-2 multi-spectral imagery in Georgia (the Caucasus)
    Mikeladze, Giorgi
    Gavashelishvili, Alexander
    Akobia, Ilia
    Metreveli, Vasil
    IFOREST-BIOGEOSCIENCES AND FORESTRY, 2020, 13 : 329 - 335
  • [30] Maize crop residue cover mapping using Sentinel-2 MSI data and random forest algorithms
    Du, Jia
    Jacinthe, Pierre-Andre
    Song, Kaishan
    Zhang, Longlong
    Zhao, Boyu
    Liu, Hua
    Wang, Yan
    Zhang, Weijian
    Zheng, Zhi
    Yu, Weilin
    Zhang, Yiwei
    Jiang, Dapeng
    INTERNATIONAL SOIL AND WATER CONSERVATION RESEARCH, 2025, 13 (01) : 189 - 202