Identifying influential risk spreaders in cryptocurrency networks based on the novel gravity strength centrality model

被引:1
|
作者
Wu, Xin [1 ,2 ]
Lin, Tuo [2 ]
Yang, Ming-Yuan [3 ]
机构
[1] Zhejiang Univ Finance & Econ, New Type Key Think Tank Zhejiang Prov China Res In, Hangzhou, Peoples R China
[2] Zhejiang Univ Finance & Econ, China Acad Financial Res, 18 Xueyuan Rd, Hangzhou 310018, Peoples R China
[3] Henan Univ Sci & Technol, Sch Business, Luoyang, Peoples R China
关键词
Cryptocurrency network; gravity strength centrality; influential risk spreaders; network analysis; IDENTIFICATION;
D O I
10.1080/13504851.2024.2339375
中图分类号
F [经济];
学科分类号
02 ;
摘要
A novel approach of gravity strength centrality (GSC) model is proposed to identify the influential risk spreaders in cryptocurrency networks. We also validate the performance of GSC model in terms of discrimination and accuracy using methods such as individuation rate, imprecision function, and Kendall coefficient. Our findings show that (i) the novel GSC model can serve as an excellent indicator for measuring risk spreaders in the cryptocurrency market, (ii) Ethereum has a stronger influence compared to Bitcoin,(iii) the role of cryptocurrency EOS is increased after the COVID-19 pandemic.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Identifying influential spreaders in complex networks based on limited spreading domain
    Ma, Qian
    Jiang, Shuhao
    Yang, Dandan
    Cheng, Guangtao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 9303 - 9314
  • [42] Semi-global triangular centrality measure for identifying the influential spreaders from undirected complex networks
    Namtirtha, Amrita
    Dutta, Biswanath
    Dutta, Animesh
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 206
  • [43] Identifying influential spreaders in complex networks based on kshell hybrid method
    Namtirtha, Amrita
    Dutta, Animesh
    Dutta, Biswanath
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 499 : 310 - 324
  • [44] Identifying influential spreaders in complex networks based on local and global structure
    Liang, Li
    Tang, Zhonghui
    Gong, Shicai
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 82
  • [45] A New Method for Identifying Influential Spreaders in Complex Networks
    Qiu, Liqing
    Liu, Yuying
    Zhang, Jianyi
    COMPUTER JOURNAL, 2024, 67 (01): : 362 - 375
  • [46] k-hop Centrality Metric for Identifying Influential Spreaders in Dynamic Large-scale Social Networks
    Niu, Jianwei
    Fan, Jinyang
    Wang, Lei
    Stojmenovic, Milica
    2014 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2014), 2014, : 2954 - 2959
  • [47] Identifying top influential spreaders based on the influence weight of layers in multiplex networks
    Zhou, Xiaohui
    Bouyer, Asgarali
    Maleki, Morteza
    Mohammadi, Moslem
    Arasteh, Bahman
    CHAOS SOLITONS & FRACTALS, 2023, 173
  • [48] Identifying influential spreaders in large-scale networks based on evidence theory
    Liu, Dong
    Nie, Hao
    Zhao, Jing
    Wang, Qingchen
    NEUROCOMPUTING, 2019, 359 : 466 - 475
  • [49] Identifying multiple influential spreaders in complex networks based on spectral graph theory
    崔东旭
    何嘉林
    肖子飞
    任卫平
    Chinese Physics B, 2023, (09) : 696 - 703
  • [50] Identifying influential spreaders in complex networks based on density entropy and community structure
    苏湛
    陈磊
    艾均
    郑雨语
    别娜
    Chinese Physics B, 2024, 33 (05) : 779 - 788