Design of new-concept magnetomechanical devices by phase-field simulations

被引:3
|
作者
Hu, Jia-Mian [1 ]
机构
[1] Univ Wisconsin Madison, Dept Mat Sci & Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Acoustic waves; Modeling; Magnetic; Piezoelectric; Photonic; MULTIFERROIC HETEROSTRUCTURES; DOMAIN-STRUCTURES; MAGNON; STRAIN; DRIVEN; SKYRMIONS; DYNAMICS; VOLTAGE; MAGNETOSTRICTION; ANISOTROPY;
D O I
10.1557/s43577-024-00699-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The phase-field method enables simulating the spatiotemporal evolution of the coupled physical-order parameters under externally applied fields in a wide range of materials and devices. Leveraging advanced numerical algorithms for solving the nonlinear partial differential equations and scalable parallelization techniques, the phase-field method is becoming a powerful computational tool to model and design devices operating based on multiple-coupled physical processes. This article will highlight examples of applying phase-field simulations to predict new mesoscale physical phenomena and design new-concept magnetomechanical devices by identifying the desirable combination of the composition, size, and geometry of monolithic materials as well as the device structure. A brief outlook of the opportunities and challenges for modeling and designing magnetomechanical devices with phase-field modeling is also provided.
引用
收藏
页码:636 / 643
页数:8
相关论文
共 50 条
  • [41] Phase-field simulations of crystal growth with adaptive mesh refinement
    Li, Yibao
    Kim, Junseok
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (25-26) : 7926 - 7932
  • [42] Mesoscopic modeling of columnar solidification and comparisons with phase-field simulations
    Zaloznik, M.
    Viardin, A.
    Souhar, Y.
    Combeau, H.
    Apel, M.
    MCWASP XIV: INTERNATIONAL CONFERENCE ON MODELLING OF CASTING, WELDING AND ADVANCED SOLIDIFICATION PROCESSES, 2015, 84
  • [43] Efficient finite strain elasticity solver for phase-field simulations
    Oleg Shchyglo
    Muhammad Adil Ali
    Hesham Salama
    npj Computational Materials, 10
  • [44] Spontaneous shrinkage of drops and mass conservation in phase-field simulations
    Yue, Pengtao
    Zhou, Chunfeng
    Feng, James J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 223 (01) : 1 - 9
  • [45] Recent developments of dendritic solidification simulations by phase-field method
    TAKAKI T.
    Keikinzoku/Journal of Japan Institute of Light Metals, 2019, 69 (11): : 562 - 568
  • [46] Phase-field simulations and experiments of faceted growth in liquid crystals
    GonzalezCinca, R
    RamirezPiscina, L
    Casademunt, J
    HernandezMachado, A
    Kramer, L
    Katona, TT
    Borzsonyi, T
    Buka, A
    PHYSICA D, 1996, 99 (2-3): : 359 - 368
  • [47] Determining material parameters using phase-field simulations and experiments
    Zhang, Jin
    Poulsen, Stefan O.
    Gibbs, John W.
    Voorhees, Peter W.
    Poulsen, Henning F.
    ACTA MATERIALIA, 2017, 129 : 229 - 238
  • [48] PHASE-FIELD SIMULATIONS OF BUBBLE GROWTH UNDER CONVECTIVE CONDITIONS
    Badillo, Arnoldo A.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 8C, 2014,
  • [49] A Phase-Field Approach for Liquid-Liquid Flow Simulations
    Stalio, Enrico
    Piller, Marzio
    INTERNATIONAL JOURNAL OF FLUID MECHANICS RESEARCH, 2013, 40 (05) : 373 - 381
  • [50] Phase-field simulations and geometrical characterization of cellular solidification fronts
    Ma, Yiwen
    Plapp, Mathis
    JOURNAL OF CRYSTAL GROWTH, 2014, 385 : 140 - 147