Enhancing the implantation of mechanical circulatory support devices using computational simulations

被引:0
|
作者
Lopez-Santana, Gabriela [1 ,2 ]
De Rosis, Alessandro [1 ]
Grant, Stuart [3 ,4 ]
Venkateswaran, Rajamiyer [2 ,4 ]
Keshmiri, Amir [1 ,3 ]
机构
[1] Univ Manchester, Sch Engn, Manchester, England
[2] Wythenshawe Hosp, Dept Cardiothorac Transplantat & Mech Circulatory, Manchester, England
[3] Manchester Univ NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, Manchester, England
[4] Univ Manchester, Fac Biol, Sch Med Sci, Div Cardiovasc Sci, Manchester, England
基金
英国工程与自然科学研究理事会;
关键词
HeartMate; left ventricular assist device; heart failure; computational fluid dynamics; turbulent flow; aortic flow; outflow graft; surgical optimisation; VENTRICULAR ASSIST DEVICE; WALL SHEAR-STRESS; LVAD OUTFLOW GRAFT; AORTIC-INSUFFICIENCY; BLOOD-FLOW; THROMBOSIS; MODELS; SYSTEM;
D O I
10.3389/fbioe.2024.1279268
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Introduction: Patients with end-stage heart failure (HF) may need mechanical circulatory support such as a left ventricular assist device (LVAD). However, there are a range of complications associated with LVAD including aortic regurgitation (AR) and thrombus formation. This study assesses whether the risk of developing aortic conditions can be minimised by optimising LVAD implantation technique.Methods: In this work, we evaluate the aortic flow patterns produced under different geometrical parameters for the anastomosis of the outflow graft (OG) to the aorta using computational fluid dynamics (CFD). A three-dimensional aortic model is created and the HeartMate III OG positioning is simulated by modifying (i) the distance from the anatomic ventriculo-arterial junction (AVJ) to the OG, (ii) the cardinal position around the aorta, and (iii) the angle between the aorta and the OG. The continuous LVAD flow and the remnant native cardiac cycle are used as inlet boundaries and the three-element Windkessel model is applied at the pressure outlets.Results: The analysis quantifies the impact of OG positioning on different haemodynamic parameters, including velocity, wall shear stress (WSS), pressure, vorticity and turbulent kinetic energy (TKE). We find that WSS on the aortic root (AoR) is around two times lower when the OG is attached to the coronal side of the aorta using an angle of 45 degrees +/- 10 degrees at a distance of 55 mm.Discussion: The results show that the OG placement may significantly influence the haemodynamic patterns, demonstrating the potential application of CFD for optimising OG positioning to minimise the risk of cardiovascular complications after LVAD implantation.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Infection after implantation of pulsatile mechanical circulatory support devices
    Holman, William L.
    Kirklin, James K.
    Naftel, David C.
    Kormos, Robert L.
    Desvign-Nickens, Patricia
    Camacho, Margarita T.
    Ascheim, Deborah D.
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2010, 139 (06): : 1632 - U309
  • [2] Evaluating heart failure after implantation of mechanical circulatory support devices
    Shah K.B.
    Tang D.G.
    Cooke R.H.
    Kontos M.C.
    Lewis N.P.
    Katlaps G.J.
    Hess M.L.
    Kasirajan V.
    Current Heart Failure Reports, 2012, 9 (1) : 65 - 74
  • [3] Mechanical Circulatory Support Devices
    Shannon, Dana
    Hallinan, William
    Massey, H. Todd
    Ackerman, Michael H.
    AACN ADVANCED CRITICAL CARE, 2006, 17 (04) : 368 - 372
  • [4] PREOPERATIVE PREDICTORS OF SURGICAL BLEEDING WITH IMPLANTATION OF DURABLE MECHANICAL CIRCULATORY SUPPORT DEVICES
    Lietz, Katherine
    Barreiro, Christopher
    Philpott, Jonathan
    Flink, Claudia
    McGrath, Michael
    Herre, John
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2017, 69 (11) : 869 - 869
  • [5] Preoperative Predictors of Surgical Bleeding with Implantation of Durable Mechanical Circulatory Support Devices
    Lietz, K.
    Barreiro, C.
    Philpott, J.
    Flink, C.
    McGrath, M.
    Herre, J.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2017, 36 (04): : S249 - S249
  • [6] Mechanical Circulatory Support Devices in the ICU
    Shah, Keyur B.
    Smallfield, Melissa C.
    Tang, Daniel G.
    Malhotra, Rajiv
    Cooke, Richard H.
    Kasirajan, Vigneshwar
    CHEST, 2014, 146 (03) : 848 - 857
  • [7] Durable Mechanical Circulatory Support Devices
    Patel, Chetan B.
    Rogers, Joseph G.
    PROGRESS IN CARDIOVASCULAR DISEASES, 2011, 54 (02) : 132 - 143
  • [8] Mechanical Circulatory Support Devices - In Progress
    Hetzer, Roland
    Walter, Eva M. Delmo
    NEW ENGLAND JOURNAL OF MEDICINE, 2017, 376 (05): : 487 - 489
  • [9] Mechanical circulatory support towards the permanent implantation
    Loisance, D
    Tixier, D
    Mazzucotelli, JP
    Deleuze, JP
    Baufreton, C
    LeBesnerais, P
    EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 1997, 11 : S25 - S28
  • [10] Hemodynamics with mechanical circulatory support devices using a cardiogenic shock model
    Kazuyuki Yahagi
    Gohki Nishimura
    Kei Kuramoto
    Yusuke Tsuboko
    Kiyotaka Iwasaki
    Scientific Reports, 14 (1)