POSTER:Enabling Extreme-Scale Phase Field Simulation with In-situ Feature Extraction

被引:0
|
作者
Feng, Zhichen [1 ,2 ]
Li, Jialin [1 ,2 ]
Gao, Yaqian [1 ,2 ]
Tian, Shaobo [1 ,2 ]
Ye, Huang [1 ]
Zhang, Jian [1 ]
机构
[1] Chinese Acad Sci, Comp Network Informat Ctr, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
关键词
Extreme-scale simulation; Phase field; In-situ; feature extraction;
D O I
10.1145/3627535.3638486
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we present an integrated framework composed of a highly efficient phase field simulator and an in-situ feature extraction library. This novel framework enables us to conduct extreme-scale micro-structure evolution simulations while the characteristic features of each individual grain are extracted on the fly. After systematic design and optimization on the new generation Sunway supercomputer, the code scales up to 39 million cores and achieves 582 PFlops in double precision and 637 POps in mixed precision.
引用
收藏
页码:448 / 450
页数:3
相关论文
共 50 条
  • [31] USING MASSIVELY PARALLEL SIMULATION FOR MPI COLLECTIVE COMMUNICATION MODELING IN EXTREME-SCALE NETWORKS
    Mubarak, Misbah
    Carothers, Christopher D.
    Ross, Robert B.
    Carns, Philip
    PROCEEDINGS OF THE 2014 WINTER SIMULATION CONFERENCE (WSC), 2014, : 3107 - 3118
  • [32] Durango: Scalable Synthetic Workload Generation for Extreme-Scale Application Performance Modeling and Simulation
    Carothers, Christopher D.
    Meredith, Jeremy S.
    Blanco, Mark P.
    Vetter, Jeffrey S.
    Mubarak, Misbah
    LaPre, Justin
    Moore, Shirley
    SIGSIM-PADS'17: PROCEEDINGS OF THE 2017 ACM SIGSIM CONFERENCE ON PRINCIPLES OF ADVANCED DISCRETE SIMULATION, 2017, : 97 - 108
  • [33] A Case Study in Using Massively Parallel Simulation for Extreme-Scale Torus Network Codesign
    Mubarak, Misbah
    Carothers, Christopher D.
    Ross, Robert B.
    Carns, Philip
    SIGSIM-PADS'14: PROCEEDINGS OF THE 2014 ACM CONFERENCE ON SIGSIM PRINCIPLES OF ADVANCED DISCRETE SIMULATION, 2014, : 27 - 38
  • [34] POSTER: Layrub: Layer-centric GPU memory reuse and data migration in extreme-scale deep learning systems
    Liu, Bo
    Jiang, Wenbin
    Jin, Hai
    Shi, Xuanhua
    Ma, Yang
    ACM SIGPLAN NOTICES, 2018, 53 (01) : 405 - 406
  • [35] SunwayLB: Enabling Extreme-Scale Lattice Boltzmann Method Based Computing Fluid Dynamics Simulations on Sunway TaihuLight
    Liu, Zhao
    Chu, Xuesen
    Lv, Xiaojing
    Meng, Hongsong
    Shi, Shupeng
    Han, Wenji
    Xu, Jingheng
    Fu, Haohuan
    Yang, Guangwen
    2019 IEEE 33RD INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2019), 2019, : 557 - 566
  • [36] POSTER: Layrub: Layer-centric GPU memory reuse and data migration in extreme-scale deep learning systems
    Liu B.
    Jiang W.
    Jin H.
    Shi X.
    Ma Y.
    2018, Association for Computing Machinery, 2 Penn Plaza, Suite 701, New York, NY 10121-0701, United States (53): : 405 - 406
  • [37] Extreme-scale Direct Numerical Simulation of Incompressible Turbulence on the Heterogeneous Many-core System
    Xie, Jiabin
    Feng, Guangnan
    Huang, Han
    Feng, Junxuan
    Chen, Zhiguang
    Lu, Yutong
    PROCEEDINGS OF THE 29TH ACM SIGPLAN ANNUAL SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING, PPOPP 2024, 2024, : 120 - 132
  • [38] Modeling and Simulation of Extreme-Scale Fat-Tree Networks for HPC Systems and Data Centers
    Liu, Ning
    Haider, Adnan
    Jin, Dong
    Sun, Xian-He
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2017, 27 (02):
  • [39] Using Simulation to Explore Distributed Key-Value Stores for Extreme-Scale System Services
    Wang, Ke
    Kulkarni, Abhishek
    Lang, Michael
    Arnold, Dorian
    Raicu, Ioan
    2013 INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SC), 2013,
  • [40] SunwayLB: Enabling Extreme-Scale Lattice Boltzmann Method Based Computing Fluid Dynamics Simulations on Advanced Heterogeneous Supercomputers
    Liu, Zhao
    Chu, Xuesen
    Lv, Xiaojing
    Meng, Hongsong
    Liu, Hanyue
    Zhu, Guanghui
    Fu, Haohuan
    Yang, Guangwen
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 35 (02) : 324 - 337