MIM-OOD: Generative Masked Image Modelling for Out-of-Distribution Detection in Medical Images

被引:0
|
作者
Marimont, Sergio Naval [1 ]
Siomos, Vasilis [1 ]
Tarroni, Giacomo [1 ,2 ]
机构
[1] City Univ London, CitAI Res Ctr, London, England
[2] Imperial Coll London, BioMedIA, London, England
来源
关键词
out-of-distribution detection; unsupervised learning; masked image modelling;
D O I
10.1007/978-3-031-53767-7_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised Out-of-Distribution (OOD) detection consists in identifying anomalous regions in images leveraging only models trained on images of healthy anatomy. An established approach is to tokenize images and model the distribution of tokens with Auto-Regressive (AR) models. AR models are used to 1) identify anomalous tokens and 2) inpaint anomalous representations with in-distribution tokens. However, AR models are slow at inference time and prone to error accumulation issues which negatively affect OOD detection performance. Our novel method, MIM-OOD, overcomes both speed and error accumulation issues by replacing the AR model with two task-specific networks: 1) a transformer optimized to identify anomalous tokens and 2) a transformer optimized to in-paint anomalous tokens using masked image modelling (MIM). Our experiments with brain MRI anomalies show that MIM-OOD substantially outperforms AR models (DICE 0.458 vs 0.301) while achieving a nearly 25x speedup (9.5 s vs 244 s).
引用
收藏
页码:35 / 44
页数:10
相关论文
共 50 条
  • [31] Benchmarking Image Classifiers for Physical Out-of-Distribution Examples Detection
    Ojaswee
    Agarwal, Akshay
    Ratha, Nalini
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 4429 - 4437
  • [32] An Efficient Data Augmentation Network for Out-of-Distribution Image Detection
    Lin, Cheng-Hung
    Lin, Cheng-Shian
    Chou, Po-Yung
    Hsu, Chen-Chien
    IEEE ACCESS, 2021, 9 : 35313 - 35323
  • [33] Attention Masking for Improved Near Out-of-Distribution Image Detection
    Sim, Minho
    Lee, Jongwhoa
    Choi, Ho-Jin
    2023 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING, BIGCOMP, 2023, : 195 - 202
  • [34] Pobe: Generative Model-based Out-of-distribution Text Detection Method
    Ouyang, Ya-Wen
    Gao, Yuan
    Zong, Shi
    Bao, Yu
    Dai, Xin-Yu
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (09): : 4365 - 4376
  • [35] Segmentation Consistency Training: Out-of-Distribution Generalization for Medical Image Segmentation
    Torpmann-Hagen, Birk
    Thambawita, Vajira
    Riegler, Michael A.
    Halvorsen, Pal
    Glette, Kyrre
    2022 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2022, : 42 - 49
  • [36] OOD-CV-v2: An Extended Benchmark for Robustness to Out-of-Distribution Shifts of Individual Nuisances in Natural Images
    Zhao, Bingchen
    Wang, Jiahao
    Ma, Wufei
    Jesslen, Artur
    Yang, Siwei
    Yu, Shaozuo
    Zendel, Oliver
    Theobalt, Christian
    Yuille, Alan L.
    Kortylewski, Adam
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 11104 - 11118
  • [37] Out-of-Distribution Detection for Skin Lesion Images with Deep Isolation Forest
    Li, Xuan
    Lu, Yuchen
    Desrosiers, Christian
    Liu, Xue
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2020, 2020, 12436 : 91 - 100
  • [38] Deep Neural Forest for Out-of-Distribution Detection of Skin Lesion Images
    Li, Xuan
    Desrosiers, Christian
    Liu, Xue
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (01) : 157 - 165
  • [39] Typicality Excels Likelihood for Unsupervised Out-of-Distribution Detection in Medical Imaging
    Abdi, Lemar
    Valiuddin, M. M. Amaan
    Viviers, Christiaan G. A.
    de With, Peter H. N.
    van der Sommen, Fons
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, UNSURE 2024, 2025, 15167 : 149 - 159
  • [40] Out-of-Distribution Detection in Hand Gesture Recognition Using Image Augmentation
    Lee, Hyeonji
    Yu, Yeonguk
    Lee, Kyoobin
    INTELLIGENT AUTONOMOUS SYSTEMS 18, VOL 1, IAS18-2023, 2024, 795 : 595 - 605