EnduroBone: A 3D printed bioreactor for extended bone tissue culture

被引:1
|
作者
Gustin, Paula [1 ]
Prasad, Anamika [1 ,2 ,3 ]
机构
[1] Florida Int Univ, Dept Biomed Engn, Miami, FL 33199 USA
[2] Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33199 USA
[3] Florida Int Univ, Biomol Sci Inst, Miami, FL 33199 USA
来源
HARDWAREX | 2024年 / 18卷
关键词
3D bioreactor; Bone; Long-term culture; Cell viability; MECHANICAL STIMULATION; COMPRESSIVE STRENGTH; CANCELLOUS BONE; LOW-MAGNITUDE; VIABILITY; SCAFFOLDS; FREQUENCY; PLA; AGE;
D O I
10.1016/j.ohx.2024.e00535
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Studies of the effects of external stimuli on bone tissue, disease transmission mechanisms, and potential medication discoveries benefit from long-term tissue viability ex vivo. By simulating the in-vivo environment, bioreactors are essential for studying bone cellular activity throughout biological processes. We present the development of an automated 3D-printed bioreactor EnduroBone designed to sustain the ex-vivo viability of 10 mm diameter cancellous bone cores for an extended period. The device is supplied with two critical parameters for maintaining bone tissue viability: closed-loop continuous flow perfusion of 1 mL/min for nutrient diffusion and waste removal and direct mechanical stimulation with cyclic compression at 13.2 RPM (revolutions per minute) to promote cell viability which can lead to improved tissue stability during ex vivo culturing. The bioreactor addresses several limitations of existing systems and provides a versatile open-source platform for bone cancer research, orthopedic device testing, and other related applications. To validate the bioreactor, fresh swine samples were cultured ex-vivo, and their cell viability was determined to be maintained for up to 28 days. Periodic cell viability assessment through live/dead cell staining and confocal imaging at the start (0 days) and at several time points throughout the culture period (7, 14, 21, and 28 days) was used to demonstrate EnduroBone effectiveness in sustaining bone cell health for the extended period tested.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] 3D Printed scaffolds with bactericidal activity aimed for bone tissue regeneration
    Correia, Tiago R.
    Figueira, Daniela R.
    de Sa, Kevin D.
    Miguel, Sonia P.
    Fradique, Ricardo G.
    Mendonca, Antonio G.
    Correia, Ilidio J.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2016, 93 : 1432 - 1445
  • [22] 3D printed porous ceramic scaffolds for bone tissue engineering: a review
    Yu Wen
    Sun Xun
    Meng Haoye
    Sun Baichuan
    Chen Peng
    Liu Xuejian
    Zhang Kaihong
    Yang Xuan
    Peng Jiang
    Lu Shibi
    BIOMATERIALS SCIENCE, 2017, 5 (09) : 1690 - 1698
  • [23] A 3D Printed Microfluidic Bioreactor to Engineering Biphasic Construct
    De Riccardis, G.
    Alexander, P. G.
    Raimondi, M. T.
    Tuan, R. S.
    Gottardi, R.
    TISSUE ENGINEERING PART A, 2017, 23 : S6 - S7
  • [24] Natural polymer hydrogel based 3D printed bioreactor testing platform for cancer cell culture
    Rehovsky, Chad
    Bajwa, Dilpreet S.
    Mallik, Sanku
    Pullan, Jessica E.
    Ara, Ismat
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [25] A Review of 3D Printed Bone Implants
    Li, Zhaolong
    Wang, Qinghai
    Liu, Guangdong
    MICROMACHINES, 2022, 13 (04)
  • [26] Development of Hydrogel Bioinks and 3D Bioprinting Techniques to Support Extended 3D Lung Tissue Culture In Vitro
    Bailey, K. E.
    Darling, N. J.
    Velu, D.
    D'Ovidio, T. J.
    Floren, M. L.
    Lammers, S. R.
    Stenmark, K. R.
    Magin, C. M.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 199
  • [27] BIOMOLECULE IMMOBILIZED 3D PRINTED NANOHYBRID SCAFFOLDS FOR ACCELERATED BONE TISSUE REGENERATION
    Ghorai, Sanjoy Kumar
    Roy, Trina
    Dhara, Santanu
    Chattopadhyay, Santanu
    TISSUE ENGINEERING PART A, 2022, 28 : S164 - S165
  • [28] Design, evaluation, and optimization of 3D printed truss scaffolds for bone tissue engineering
    Shirzad, M.
    Zolfagharian, A.
    Matbouei, A.
    Bodaghi, M.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2021, 120
  • [29] Novel 3d Printed Bioceramic Scaffolds as In Vitro Models for Bone Tissue Regeneration
    Mancuso, E.
    Bretcanu, O.
    Birch, M.
    Marshall, M.
    Dalgarno, K.
    TISSUE ENGINEERING PART A, 2015, 21 : S269 - S270
  • [30] Engineered 3D printed poly(ε-caprolactone)/graphene scaffolds for bone tissue engineering
    Wang, Weiguang
    Passarini Junior, Jose Roberto
    Lopes Nalesso, Paulo Roberto
    Musson, David
    Cornish, Jillian
    Mendonca, Fernanda
    Caetano, Guilherme Ferreira
    Bartolo, Paulo
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 100 : 759 - 770