Low-rank generalized alternating direction implicit iteration method for solving matrix equations

被引:0
|
作者
Zhang, Juan [1 ]
Xun, Wenlu [2 ]
机构
[1] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc, Minist Educ,Sch Math & Computat Sci, Xiangtan, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan, Hunan, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 04期
关键词
Lyapunov equation; Continuous-time algebraic Riccati equation; Low-rank generalized alternating direction implicit iteration; RICCATI EQUATION; KRYLOV SUBSPACE; ALGORITHM; REDUCTION;
D O I
10.1007/s40314-024-02774-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an effective low-rank generalized alternating direction implicit iteration (R-GADI) method for solving large-scale sparse and stable Lyapunov matrix equations and continuous-time algebraic Riccati matrix equations. The method is based on generalized alternating direction implicit iteration (GADI), which exploits the low-rank property of matrices and utilizes the Cholesky factorization approach for solving. The advantage of the new algorithm lies in its direct and efficient low-rank formulation, which is a variant of the Cholesky decomposition in the Lyapunov GADI method, saving storage space and making it computationally effective. When solving the continuous-time algebraic Riccati matrix equation, the Riccati equation is first simplified to a Lyapunov equation using the Newton method, and then the R-GADI method is employed for computation. Additionally, we analyze the convergence of the R-GADI method and prove its consistency with the convergence of the GADI method. Finally, the effectiveness of the new algorithm is demonstrated through corresponding numerical experiments.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Alternating Least-Squares for Low-Rank Matrix Reconstruction
    Zachariah, Dave
    Sundin, Martin
    Jansson, Magnus
    Chatterjee, Saikat
    IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (04) : 231 - 234
  • [32] Alternating strategies with internal ADMM for low-rank matrix reconstruction
    Li, Kezhi
    Sundin, Martin
    Rojas, Cristian R.
    Chatterjee, Saikat
    Jansson, Magnus
    SIGNAL PROCESSING, 2016, 121 : 153 - 159
  • [33] Efficient low-rank solution of generalized Lyapunov equations
    Stephen D. Shank
    Valeria Simoncini
    Daniel B. Szyld
    Numerische Mathematik, 2016, 134 : 327 - 342
  • [34] Efficient low-rank solution of generalized Lyapunov equations
    Shank, Stephen D.
    Simoncini, Valeria
    Szyld, Daniel B.
    NUMERISCHE MATHEMATIK, 2016, 134 (02) : 327 - 342
  • [35] Robust Recovery of Corrupted Low-Rank Matrix by Implicit Regularizers
    He, Ran
    Tan, Tieniu
    Wang, Liang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (04) : 770 - 783
  • [36] ERROR ANALYSIS OF THE GENERALIZED LOW-RANK MATRIX APPROXIMATION
    Soto-Quiros, Pablo
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2021, 37 : 544 - 548
  • [37] LOW-RANK UPDATES AND A DIVIDE-AND-CONQUER METHOD FOR LINEAR MATRIX EQUATIONS
    Kressner, Daniel
    Massei, Stefano
    Robol, Leonardo
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (02): : A848 - A876
  • [38] Iteration-complexity analysis of a generalized alternating direction method of multipliers
    V. A. Adona
    M. L. N. Gonçalves
    J. G. Melo
    Journal of Global Optimization, 2019, 73 : 331 - 348
  • [39] Iteration-complexity analysis of a generalized alternating direction method of multipliers
    Adona, V. A.
    Goncalves, M. L. N.
    Melo, J. G.
    JOURNAL OF GLOBAL OPTIMIZATION, 2019, 73 (02) : 331 - 348
  • [40] ALTERNATING DIRECTION IMPLICIT ITERATION FOR SYSTEMS WITH COMPLEX SPECTRA
    ELLNER, NS
    WACHSPRESS, EL
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) : 859 - 870