Charged wormhole solutions utilizing Karmarkar condition in Ricci inverse gravity

被引:11
|
作者
Malik, Adnan [1 ,2 ]
Hussain, Amjad [3 ]
Ahmad, Mushtaq [3 ]
Shamir, M. Farasat [4 ]
机构
[1] Zhejiang Normal Univ, Sch Math Sci, Jinhua, Zhejiang, Peoples R China
[2] Univ Management & Technol, Dept Math, Sialkot Campus, Lahore, Pakistan
[3] Natl Univ Comp & Emerging Sci, Faisalabad Campus, Chiniot, Pakistan
[4] Natl Univ Comp & Emerging Sci, Lahore Campus, Lahore, Pakistan
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 06期
关键词
F(R;
D O I
10.1140/epjp/s13360-024-05277-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This study aims to present the charged wormhole solutions within the framework of modified f(R,A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f({\mathcal {R}}, {\mathcal {A}})$$\end{document} gravity, where R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}$$\end{document} is the Ricci scalar and A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} is the anti-curvature scalar. The proposed gravity is characterized by applying a linear model f(R,A)=R+alpha A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f({\mathcal {R}}, {\mathcal {A}})={\mathcal {R}}+\alpha {\mathcal {A}}$$\end{document}, where alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is the coupling parameter, and taking into account the charged anisotropic matter composition. The Karmarkar condition serves as a pivotal tool in our investigation, allowing us to precisely establish the wormhole shape function, which dictates the structure of charged wormholes. This wormhole shape function fulfills all the necessary criteria for wormhole solutions. The physical features such as energy density, pressure components, and energy conditions are calculated and represented graphically using a specific type of charge distribution. The analysis of computed wormhole shape function through graphical representation, utilizing suitable parameter values, illustrates the breach of energy conditions, signifying the existence of a wormhole. The presented charged wormhole solutions in this work not only illustrate the violation of energy conditions but also open up discussions on the unusual characteristics of spacetime. Moreover, utilizing the equilibrium condition, the wormhole stability is evaluated in the presence of a charged electric force. Overall, we can deduce that our findings fulfill all the criteria for the existence of a wormhole, affirming the validity and consistency of our study.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Ricci inverse gravity wormholes
    Mustafa, G.
    PHYSICS LETTERS B, 2024, 848
  • [32] Realistic solutions of fluid spheres in f(G, T) Gravity under Karmarkar condition
    Mustafa, G.
    Xia Tie-Cheng
    Shamir, M. Farasat
    ANNALS OF PHYSICS, 2020, 413
  • [33] Exact solutions of a charged wormhole
    Kim, SW
    Lee, H
    PHYSICAL REVIEW D, 2001, 63 (06)
  • [34] Embedding procedure and wormhole solutions in Rastall gravity utilizing the class I approach
    Malik, Adnan
    Ashraf, Asifa
    Mofarreh, Fatima
    Ali, Akram
    Shoaib, Muhammad
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (09)
  • [35] Generalized charged anisotropic star model in Karmarkar condition
    Makalo, Pastory D.
    Sunzu, Jefta M.
    Mkenyeleye, Jason M.
    NEW ASTRONOMY, 2023, 98
  • [36] Charged anisotropic compact objects obeying Karmarkar condition
    Gomez-Leyton, Y.
    Javaid, Hina
    Rocha, L. S.
    Tello-Ortiz, Francisco
    PHYSICA SCRIPTA, 2021, 96 (02)
  • [37] Wormhole solutions to Horava gravity
    Botta Cantcheff, Marcelo
    Grandi, Nicolas E.
    Sturla, Mauricio
    PHYSICAL REVIEW D, 2010, 82 (12):
  • [38] Dynamical wormhole solutions in gravity
    Sharif, M.
    Rani, Shamaila
    GENERAL RELATIVITY AND GRAVITATION, 2013, 45 (11) : 2389 - 2402
  • [39] Charged wormhole solutions in 4D Einstein-Gauss-Bonnet gravity
    Panyasiripan, Piyachat
    Felegary, Fereshteh
    Channuie, Phongpichit
    NUCLEAR PHYSICS B, 2024, 1007
  • [40] Physically viable solutions of anisotropic spheres in f (R,G) gravity satisfying the Karmarkar condition
    Mustafa, G.
    Shamir, M. Farasat
    Tie-Cheng, Xia
    PHYSICAL REVIEW D, 2020, 101 (10)