Padovan numbers that are concatenations of a Padovan number and a Perrin number

被引:0
|
作者
Duman, Merve Guney [1 ]
机构
[1] Sakarya Univ Appl Sci, Fac Technol, Fundamental Sci Engn, Sakarya, Turkiye
关键词
Diophantine equations; Continued fraction; Linear forms in logarithms; Padovan number; Perrin number; FIBONACCI;
D O I
10.1007/s10998-024-00578-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we determine all Padovan numbers which can be written as concatenations of a Padovan number and a Perrin number. We find that all positive integer solutions to the Diophantine equation Pn=10d<middle dot>Pm+Rk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}=10<^>{d}\cdot P_{m}+R_{k}$$\end{document} where m, n, k are nonnegative integers and d is the number of digits of Rk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{k}$$\end{document} are 12,37,151,351\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ 12,37,151,351\right\} $$\end{document}. Additionally, we find that all positive integer solutions to the Diophantine equation Pn=10d<middle dot>Rm+Pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}=10<^>{d}\cdot R_{m}+P_{k}$$\end{document} where m not equal 1,n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ne 1,n,$$\end{document}k are nonnegative integers and d is the number of digits of Pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{k}$$\end{document} are 21,37,265\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ 21,37,265\right\} $$\end{document}.
引用
收藏
页码:139 / 154
页数:16
相关论文
共 50 条
  • [21] PADOVAN AND PERRIN NUMBERS AS PRODUCTS OF TWO GENERALIZED LUCAS NUMBERS
    Adedji, Norbert Kouessi
    Odjoumani, Japhet
    Togbe, Alain
    ARCHIVUM MATHEMATICUM, 2023, 59 (04): : 315 - 337
  • [22] Repdigits base η as sum or product of Perrin and Padovan numbers
    Taher, Hunar Sherzad
    Dash, Saroj Kumar
    AIMS MATHEMATICS, 2024, 9 (08): : 20173 - 20192
  • [23] On Padovan or Perrin numbers as products of three repdigits in base δ
    Tiebekabe, Pagdame
    Adedji, Kouessi Norbert
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [24] k-Fibonacci numbers which are Padovan or Perrin numbers
    Rihane, Salah Eddine
    Togbe, Alain
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (02): : 568 - 582
  • [25] Common terms of k-Pell numbers and Padovan or Perrin numbers
    Benedict Vasco Normenyo
    Salah Eddine Rihane
    Alain Togbé
    Arabian Journal of Mathematics, 2023, 12 : 219 - 232
  • [26] Padovan numbers which are palindromic concatenations of two distinct repdigits
    Chalebgwa, Taboka P.
    Ddamulira, Mahadi
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [27] On perfect powers that are difference of two Perrin numbers or two Padovan numbers
    Merve Güney Duman
    Proceedings of the Indian National Science Academy, 2024, 90 : 124 - 131
  • [28] Padovan and Perrin generalized quaternions
    Isbilir, Zehra
    Gurses, Nurten
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (18) : 12060 - 12076
  • [29] On perfect powers that are difference of two Perrin numbers or two Padovan numbers
    Duman, Merve Gueney
    PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY, 2024, 90 (01): : 124 - 131
  • [30] Common terms of k-Pell numbers and Padovan or Perrin numbers
    Normenyo, Benedict Vasco
    Rihane, Salah Eddine
    Togbe, Alain
    ARABIAN JOURNAL OF MATHEMATICS, 2023, 12 (01) : 219 - 232