Preparation, structural, magnetic, and AC electrical properties of synthesized CoFe2O4 nanoparticles and its PVDF composites

被引:54
|
作者
Hussein, Marwa M. [1 ]
Saafan, Samia A. [1 ]
Abosheiasha, Hatem F. [2 ]
Zhou, Di [3 ]
Tishkevich, Daria I. [4 ,5 ]
Abmiotka, Nikita, V [5 ]
Trukhanova, Ekaterina L. [4 ,5 ]
Trukhanov, Alex, V [4 ,5 ]
Trukhanov, Sergei, V [4 ,5 ]
Hossain, M. Khalid [6 ]
Darwish, Moustafa A. [1 ]
机构
[1] Tanta Univ, Fac Sci, Phys Dept, Tanta 31527, Egypt
[2] Tanta Univ, Fac Engn, Engn Phys & Math Dept, Tanta 31511, Egypt
[3] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Sch Elect Sci & Engn, Xian 710049, Peoples R China
[4] Natl Univ Sci & Technol MISiS, Dept Elect Mat Technol, Smart Sensors Lab, Moscow 119049, Russia
[5] NAS Belarus, Lab Magnet Films Phys, SSPA Sci & Pract Mat Res Ctr, 19 P Brovki Str, Minsk 220072, BELARUS
[6] Bangladesh Atom Energy Commiss, Atom Energy Res Estab, Inst Elect, Dhaka 1349, Bangladesh
基金
俄罗斯科学基金会;
关键词
PVDF; Cobalt ferrite; Composites; Structural properties; Dielectric properties; Magnetic properties; DIELECTRIC-PROPERTIES; FERRITE NANOPARTICLES; ZN FERRITES; MN-ZN; TEMPERATURE; CONDUCTIVITY; EXTRACT;
D O I
10.1016/j.matchemphys.2024.129041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This research focuses on the synthesis of nanoscale cobalt spinel ferrite (CoFe2O4) via the sol-gel auto-combustion method and its integration with polyvinylidene fluoride (PVDF) to fabricate CoFe2O4-PVDF nanocomposites. The characterization of cobalt ferrite, using techniques such as X-ray diffraction (XRD), Fouriertransform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), revealed a pristine cubic spinel structure with a mean crystallite size of 46.61 nm, and a homogeneous particle distribution. A key finding is a marked reduction in AC conductivity upon incorporating CoFe2O4 into the PVDF matrix, underscoring its potential in energy storage applications. The composite materials exhibit enhanced magnetic properties, including significant saturation magnetization and increased coercivity, making them prime candidates for high-density magnetic recording applications. Interestingly, the study also unveils that including CoFe2O4 in PVDF does not alter the beta phase of PVDF, highlighting the compatibility and stability of the composite formation. Furthermore, the impedance analysis of the ferrite and composite samples revealed the predominance of grain boundary resistance, offering more profound insights into their electrical behaviour. This finding is pivotal in understanding the electrical conduction mechanisms within these nanocomposites. Despite the comprehensive analysis, the absence of the highest peak in the loss tangent indicates the necessity for further investigation into the dielectric loss dynamics of these materials. Overall, this research significantly advances the understanding of CoFe2O4 nanostructures and their potential applications in advanced nanotechnology, particularly in energy storage and high-density magnetic recording. Future studies are expected to further refine these materials for a broader range of technological applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Role of graphene on structural, dielectric and magnetic properties of CoFe2O4 nanoparticles
    Sunirmal Saha
    Nishi Das
    Poonam Chakra
    Krutika L. Routray
    Dhrubananda Behera
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 14464 - 14479
  • [22] Development of Multiferroism in PVDF with CoFe2O4 Nanoparticles
    C. Behera
    R. N. P. Choudhary
    Piyush R. Das
    Journal of Polymer Research, 2017, 24
  • [23] Development of Multiferroism in PVDF with CoFe2O4 Nanoparticles
    Behera, C.
    Choudhary, R. N. P.
    Das, Piyush R.
    JOURNAL OF POLYMER RESEARCH, 2017, 24 (04)
  • [24] Influence of pH and fuels on the combustion synthesis, structural, morphological, electrical and magnetic properties of CoFe2O4 nanoparticles
    Shanmugavani, A.
    Selvan, R. Kalai
    Layek, Samar
    Vasylechko, Leonid
    Sanjeeviraja, C.
    MATERIALS RESEARCH BULLETIN, 2015, 71 : 122 - 132
  • [25] Structural, Magnetic, and Electrical Properties of CoFe2O4 Nanostructures Synthesized Using Microwave-Assisted Hydrothermal Method
    Kumar, Shalendra
    Ahmed, Faheem
    Shaalan, Nagih M.
    Kumar, Rajesh
    Alshoaibi, Adil
    Arshi, Nishat
    Dalela, Saurabh
    Sayeed, Fatima
    Dwivedi, Sourabh
    Kumari, Kavita
    MATERIALS, 2022, 15 (22)
  • [26] Magnetic Properties Of CoFe2O4 and ZnFe2O4 Nanoparticles Synthesized By Novel Chemical Route
    Kharat, S. P.
    Darvade, T. C.
    Gaikwad, S. K.
    Baraskar, B. G.
    Kakade, S. G.
    Kambale, R. C.
    Kolekar, Y. D.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2015, 2016, 1731
  • [27] Magnetic Properties of Annealed CoFe2O4 Nanoparticles Synthesized by the PEG-Assisted Route
    Esir, S.
    Topkaya, R.
    Baykal, A.
    Akman, O.
    Toprak, M. S.
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2014, 24 (02) : 424 - 430
  • [28] Characterization and magnetic properties of CoFe2O4 nanoparticles synthesized by the co-precipitation method
    Bayca, Feray
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2024, 21 (01) : 544 - 554
  • [29] Hydrothermal Synthesis of CoFe2O4 Nanoparticles and their Magnetic Properties
    Zhang, Fan
    Su, Ruiliang
    Shi, Lizhi
    Liu, Yang
    Chen, Yanna
    Wang, Zhanjie
    ADVANCES IN TEXTILE ENGINEERING AND MATERIALS III, PTS 1 AND 2, 2013, 821-822 : 1358 - +
  • [30] Magnetic properties and magnetic relaxation in a suspension of CoFe2O4 nanoparticles
    Babic-Stojic, B.
    Jokanovic, V.
    Milivojevic, D.
    Jaglicic, Z.
    Makovec, D.
    Jovic, N.
    Marinovic-Cincovic, M.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (23)