Recent progress on functional polymeric membranes for CO2 separation from flue gases: A review

被引:12
|
作者
Jana, Animesh [1 ]
Modi, Akshay [1 ]
机构
[1] Indian Inst Sci Educ & Res Bhopal, Dept Chem Engn, Bhopal 462066, Madhya Pradesh, India
来源
关键词
Polymeric membrane; CO2; separation; Flue gas; Robeson upper bound; Permeability-selectivity trade-off; Plasticization; Physical aging; MIXED-MATRIX MEMBRANES; HOLLOW-FIBER MEMBRANES; FILM COMPOSITE MEMBRANES; CHEMICAL CROSS-LINKING; MULTILAYER THIN-FILM; CARBON-DIOXIDE; FREE-VOLUME; INTERFACIAL POLYMERIZATION; PILOT-PLANT; INTRINSIC MICROPOROSITY;
D O I
10.1016/j.ccst.2024.100204
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The separation of CO2 has been recognized as a potential approach to address the impacts of climate change resulting from the emission of flue gases into the environment. Efficient separation technologies are required to effectively remove CO2 from flue gases. To resolve this problem, membrane -based gas separation is considered an economically viable and energy -efficient technology over conventional techniques. Functional polymeric membranes have gained a lot of interest for their attractive gas separation performance. Thus, this work aims to critically review the recent developments of functional polymeric membranes designed for CO2 separation from flue gases. Starting with a background on flue gases and polymeric membranes, a brief discussion on Robeson's upper bound for CO2/N2 separation is provided. After that, a detailed analysis of the current advancements in different membrane modification approaches, such as mixed matrix, grafting, layer -by -layer assembly, and interfacial polymerization, for improved performance of polymeric membranes is provided. Furthermore, the effect of CO2 on polymeric membranes (plasticization and aging), the current global market and key market players in the membranes -based gas separation field are discussed thoroughly. Finally, a concise remark on the future directions of polymeric membranes for CO2 separation from flue gases is presented.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Cyclic Carbonation Calcination Studies of Limestone and Dolomite for CO2 Separation From Combustion Flue Gases
    Senthoorselvan, Sivalingam
    Gleis, Stephan
    Hartmut, Spliethoff
    Yrjas, Patrik
    Hupa, Mikko
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2009, 131 (01):
  • [42] Recent advances on mixed matrix membranes for CO2 separation
    Ming Wang
    Zhi Wang
    Song Zhao
    Jixiao Wang
    Shichang Wang
    Chinese Journal of Chemical Engineering, 2017, 25 (11) : 1581 - 1597
  • [43] Recent advances on mixed matrix membranes for CO2 separation
    Wang, Ming
    Wang, Zhi
    Zhao, Song
    Wang, Jixiao
    Wang, Shichang
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2017, 25 (11) : 1581 - 1597
  • [44] Experimental evaluation on the CO2 separation process supported by polymeric membranes
    Freni, S
    Cavallaro, S
    Donato, S
    Chiodo, V
    Vita, A
    MATERIALS LETTERS, 2004, 58 (12-13) : 1865 - 1872
  • [45] CO2 Induced Plasticization in Glassy Polymeric Membranes for Gas Separation
    Minelli, Matteo
    Oradei, Stefano
    Fiorini, Maurizio
    Sarti, Giulio C.
    9TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS AND COMPOSITES: FROM AEROSPACE TO NANOTECHNOLOGY, 2018, 1981
  • [46] Biopolymers for sustainable membranes in CO2 separation: a review
    Russo, Francesca
    Galiano, Francesco
    Iulianelli, Adolfo
    Basile, Angelo
    Figoli, Alberto
    FUEL PROCESSING TECHNOLOGY, 2021, 213
  • [47] Recent progress in CO2 capture/sequestration:: A review
    Abu-Khader, Mazen M.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2006, 28 (14) : 1261 - 1279
  • [48] Chitosan for separation and capture of CO2 from flue gas
    Levitskaia, Tatiana G.
    Casella, Amanda J.
    Peterson, James M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [49] Review of recent process developments in the field of carbon dioxide (CO2) capture from power plants flue gases and the future perspectives
    Obi, Donald
    Onyekuru, Samuel
    Orga, Anslem
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2024, 43 (01)
  • [50] High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas
    Li, Pei
    Paul, D. R.
    Chung, Tai-Shung
    GREEN CHEMISTRY, 2012, 14 (04) : 1052 - 1063