A Parallel Finite Element Discretization Scheme for the Natural Convection Equations

被引:0
|
作者
Shang, Yueqiang [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
关键词
Natural convection equations; Discretization; Finite element; Parallel algorithm; Domain decomposition; VARIATIONAL MULTISCALE METHOD; FULL DOMAIN PARTITION; DRIVEN CAVITY; ALGORITHMS; BOUNDARY; ENCLOSURE;
D O I
10.1007/s10915-024-02601-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article presents a parallel finite element discretization scheme for solving numerically the steady natural convection equations, where a fully overlapping domain decomposition technique is used for parallelization. In this scheme, each processor computes independently a local solution in its subdomain using a mesh that covers the entire domain. It has a small mesh size h around the subdomain and a large mesh size H away from the subdomain. The discretization scheme is easy to implement based on existing serial software. It can yield an optimal convergence rate for the approximate solutions with suitable algorithmic parameters. Compared with the standard finite element method, the scheme is able to obtain an approximate solution of comparable accuracy with considerable reduction in computational time. Theoretical and numerical results show the promise of the scheme, where numerical simulation results for some benchmark problems such as the buoyancy-driven square cavity flow, right-angled triangular cavity flow and sinusoidal hot cylinder flow are provided.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] L2-STABILITY OF A FINITE ELEMENT - FINITE VOLUME DISCRETIZATION OF CONVECTION-DIFFUSION-REACTION EQUATIONS WITH NONHOMOGENEOUS MIXED BOUNDARY CONDITIONS
    Deuring, Paul
    Eymard, Robert
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (03): : 919 - 947
  • [32] Finite element discretization of the Navier–Stokes equations with a free capillary surface
    Eberhard Bänsch
    Numerische Mathematik, 2001, 88 : 203 - 235
  • [33] Iterative methods in penalty finite element discretization for the steady MHD equations
    Su, Haiyan
    Feng, Xinlong
    Huang, Pengzhan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 304 : 521 - 545
  • [34] A new efficient finite-difference discretization of convection-diffusion equations
    Kriventsev, VI
    ANNUAL MEETING ON NUCLEAR TECHNOLOGY '96, 1996, : 130 - 133
  • [35] A positivity-preserving ALE finite element scheme for convection-diffusion equations in moving domains
    Boiarkine, Oleg
    Kuzmin, Dmitri
    Canic, Suncica
    Guidoboni, Giovanna
    Mikelic, Andro
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (08) : 2896 - 2914
  • [36] Adaptive finite volume or finite element discretization of Darcy's equations with variable permeability
    Achdou, Y
    Bernardi, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (07): : 693 - 698
  • [37] Mortar finite element discretization of a model coupling Darcy and Stokes equations
    Bernardi, Christine
    Rebollo, Tomas Chacon
    Hecht, Frederic
    Mghazli, Zoubida
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (03): : 375 - 410
  • [38] Geometric finite element discretization of Maxwell equations in primal and dual spaces
    He, B
    Teixeira, FL
    PHYSICS LETTERS A, 2006, 349 (1-4) : 1 - 14
  • [39] FINITE ELEMENT DISCRETIZATION OF DARCY'S EQUATIONS WITH PRESSURE DEPENDENT POROSITY
    Girault, Vivette
    Murat, Francois
    Salgado, Abner
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (06): : 1155 - 1191
  • [40] A truncated Fourier/finite element discretization of the stokes equations in an axisymmetric domain
    Belhachmi, Z
    Bernardi, C
    Deparis, S
    Hecht, F
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (02): : 233 - 263