Linear Monte Carlo quadrature with optimal confidence intervals

被引:0
|
作者
Kunsch, Robert J. [1 ]
机构
[1] Rhein Westfal TH Aachen, Chair Math Informat Proc, Pontdriesch 10, D-52062 Aachen, Germany
关键词
Monte Carlo integration; Sobolev functions; Information-based complexity; Linear methods; Asymptotic error; Confidence intervals; INEQUALITIES; VARIABLES;
D O I
10.1016/j.jco.2024.101851
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the numerical integration of functions from isotropic Sobolev spaces W-p(s)([0, 1](d)) using finitely many function evaluations within randomized algorithms, aiming for the smallest possible probabilistic error guarantee e > 0 at confidence level 1 - delta is an element of (0, 1). For spaces consisting of continuous functions, non-linear Monte Carlo methods with optimal confidence properties have already been known, in few cases even linear methods that succeed in that respect. In this paper we promote a method called stratified control variates (SCV) and by it show that already linear methods achieve optimal probabilistic error rates in the high smoothness regime without the need to adjust algorithmic parameters to the uncertainty 8. We also analyse a version of SCV in the low smoothness regime where W-p(s)([0, 1](d)) may contain functions with singularities. Here, we observe a polynomial dependence of the error on delta(-1) in contrast to the logarithmic dependence in the high smoothness regime. (c) 2024 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Confidence intervals in optimal fingerprinting
    DelSole, Timothy
    Trenary, Laurie
    Yan, Xiaoqin
    Tippett, Michael K.
    CLIMATE DYNAMICS, 2019, 52 (7-8) : 4111 - 4126
  • [32] Confidence intervals in optimal fingerprinting
    Timothy DelSole
    Laurie Trenary
    Xiaoqin Yan
    Michael K. Tippett
    Climate Dynamics, 2019, 52 : 4111 - 4126
  • [33] Uncertainty and confidence intervals in optical design using the Monte Carlo ray-trace method
    Sánchez, MC
    Nevárez, F
    Mahan, JR
    Priestley, KJ
    SENSORS, SYSTEMS, AND NEXT-GENERATION SATELLITES IV, 2000, 4169 : 190 - 201
  • [34] A comparison study of modal parameter confidence intervals computed using the Monte Carlo and bootstrap techniques
    Farrar, CR
    Doebling, SW
    Cornwell, PJ
    IMAC - PROCEEDINGS OF THE 16TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS 1 AND 2, 1998, 3243 : 936 - 944
  • [35] Parameter estimation and confidence intervals for Xe-CT ventilation studies: a Monte Carlo approach
    Simon, BA
    Marcucci, C
    Fung, MS
    Lele, SR
    JOURNAL OF APPLIED PHYSIOLOGY, 1998, 84 (02) : 709 - 716
  • [37] Bootstrap-based techniques for computing confidence intervals in Monte Carlo system reliability evaluation
    Rocco, CM
    Zio, E
    ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 2005 PROCEEDINGS, 2005, : 303 - 307
  • [38] CONFIDENCE LIMITS FOR MONTE CARLO CALCULATIONS
    BURROWS, GL
    MACMILLAN, DB
    NUCLEAR SCIENCE AND ENGINEERING, 1965, 22 (03) : 384 - +
  • [39] Monte Carlo variance of scrambled net quadrature
    Owen, AB
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) : 1884 - 1910
  • [40] Tropical Monte Carlo quadrature for Feynman integrals
    Borinsky, Michael
    ANNALES DE L INSTITUT HENRI POINCARE D, 2023, 10 (04): : 635 - 685