Attacking convolutional neural network using differential evolution

被引:20
|
作者
Su J. [1 ]
Vargas D.V. [2 ]
Sakurai K. [2 ]
机构
[1] Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka
[2] Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka
基金
日本科学技术振兴机构;
关键词
Adversarial machine learning; Artificial intelligence; Image processing;
D O I
10.1186/s41074-019-0053-3
中图分类号
学科分类号
摘要
The output of convolutional neural networks (CNNs) has been shown to be discontinuous which can make the CNN image classifier vulnerable to small well-tuned artificial perturbation. That is, images modified by conducting such alteration (i.e., adversarial perturbation) that make little difference to the human eyes can completely change the CNN classification results. In this paper, we propose a practical attack using differential evolution (DE) for generating effective adversarial perturbations. We comprehensively evaluate the effectiveness of different types of DEs for conducting the attack on different network structures. The proposed method only modifies five pixels (i.e., few-pixel attack), and it is a black-box attack which only requires the miracle feedback of the target CNN systems. The results show that under strict constraints which simultaneously control the number of pixels changed and overall perturbation strength, attacking can achieve 72.29%, 72.30%, and 61.28% non-targeted attack success rates, with 88.68%, 83.63%, and 73.07% confidence on average, on three common types of CNNs. The attack only requires modifying five pixels with 20.44, 14.28, and 22.98 pixel value distortion. Thus, we show that current deep neural networks are also vulnerable to such simpler black-box attacks even under very limited attack conditions. © 2019, The Author(s).
引用
收藏
相关论文
共 50 条
  • [31] Water Classification Using Convolutional Neural Network
    Asghar, Saira
    Gilanie, Ghulam
    Saddique, Mubbashar
    Ullah, Hafeez
    Mohamed, Heba G.
    Abbasi, Irshad Ahmed
    Abbas, Mohamed
    IEEE ACCESS, 2023, 11 : 78601 - 78612
  • [32] Emotion Recognition Using a Convolutional Neural Network
    Zatarain-Cabada, Ramon
    Lucia Barron-Estrada, Maria
    Gonzalez-Hernandez, Francisco
    Rodriguez-Rangel, Hector
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, MICAI 2017, PT II, 2018, 10633 : 208 - 219
  • [33] A Trail Detection Using Convolutional Neural Network
    Kim, Jeonghyeok
    Lee, Heezin
    Kang, Sanggil
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON EMERGING DATABASES: TECHNOLOGIES, APPLICATIONS, AND THEORY, 2018, 461 : 275 - 279
  • [34] Pancreas Localization Using Convolutional Neural Network
    Zhao, N.
    Sheng, K.
    Ruan, D.
    MEDICAL PHYSICS, 2019, 46 (06) : E324 - E324
  • [35] Sentiment Analysis Using Convolutional Neural Network
    Ouyang, Xi
    Zhou, Pan
    Li, Cheng Hua
    Liu, Lijun
    CIT/IUCC/DASC/PICOM 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY - UBIQUITOUS COMPUTING AND COMMUNICATIONS - DEPENDABLE, AUTONOMIC AND SECURE COMPUTING - PERVASIVE INTELLIGENCE AND COMPUTING, 2015, : 2363 - 2368
  • [36] Fish Recognition Using Convolutional Neural Network
    Ding, Guoqing
    Song, Yan
    Guo, Jia
    Feng, Chen
    Li, Guangliang
    He, Bo
    Yan, Tianhong
    OCEANS 2017 - ANCHORAGE, 2017,
  • [37] Stock Prediction Using Convolutional Neural Network
    Chen, Sheng
    He, Hongxiang
    2018 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE APPLICATIONS AND TECHNOLOGIES (AIAAT 2018), 2018, 435
  • [38] Iris Recognition Using Convolutional Neural Network
    Zhuang, Yuan
    Chuah, Joon Huang
    Chow, Chee Onn
    Lim, Marcus Guozong
    2020 IEEE 10TH INTERNATIONAL CONFERENCE ON SYSTEM ENGINEERING AND TECHNOLOGY (ICSET), 2020, : 134 - 138
  • [39] Reward shaping using convolutional neural network
    Sami, Hani
    Otrok, Hadi
    Bentahar, Jamal
    Mourad, Azzam
    Damiani, Ernesto
    INFORMATION SCIENCES, 2023, 648
  • [40] Bioactivity Prediction Using Convolutional Neural Network
    Hamza, Hentabli
    Nasser, Maged
    Salim, Naomie
    Saeed, Faisal
    EMERGING TRENDS IN INTELLIGENT COMPUTING AND INFORMATICS: DATA SCIENCE, INTELLIGENT INFORMATION SYSTEMS AND SMART COMPUTING, 2020, 1073 : 341 - 351