Higher-Order Soliton Solutions for the Derivative Nonlinear Schrödinger Equation via Improved Riemann-Hilbert Method

被引:0
|
作者
Kuang, Yonghui [1 ]
Tian, Lixin [2 ]
机构
[1] Zhongyuan Univ Technol, Sch Math & Informat Sci, Zhengzhou 450007, Peoples R China
[2] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemann-Hilbert problem; Inverse scattering transform; Higher-order soliton; The derivative nonlinear Schr & ouml; dinger equation; Residue condition; MULTIPLE-POLE SOLUTIONS; SCHRODINGER-EQUATION; EVOLUTION-EQUATIONS; WAVES;
D O I
10.1007/s44198-024-00228-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss an improved Riemann-Hilbert method, by which arbitrary higher-order soliton solutions for the derivative nonlinear Schr & ouml;dinger equation can be directly obtained. The explicit determinant form of a higher-order soliton which corresponds to one pth order pole is given. Besides the interaction related to one simple pole and the other one double pole is considered.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Conservation laws, soliton solutions and modulational instability for the higher-order dispersive nonlinear Schrödinger equation
    Hai-Qiang Zhang
    Bo Tian
    Xiang-Hua Meng
    Xing Lü
    Wen-Jun Liu
    The European Physical Journal B, 2009, 72 : 233 - 239
  • [22] Multi-dark soliton solutions for the higher-order nonlinear Schrödinger equation in optical fibers
    Hai-Qiang Zhang
    Yue Wang
    Nonlinear Dynamics, 2018, 91 : 1921 - 1930
  • [23] On soliton solutions for higher-order nonlinear Schrödinger equation with cubic-quintic-septic law
    Esen, Handenur
    Onder, Ismail
    Secer, Aydin
    Bayram, Mustafa
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (02)
  • [24] Multi-soliton solutions for a higher-order coupled nonlinear Schrodinger system in an optical fiber via Riemann-Hilbert approach
    Guo, Han-Dong
    Xia, Tie-Cheng
    NONLINEAR DYNAMICS, 2021, 103 (02) : 1805 - 1816
  • [25] Norm inflation for a higher-order nonlinear Schrödinger equation with a derivative on the circle
    Kondo, Toshiki
    Okamoto, Mamoru
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2025, 6 (02):
  • [26] Riemann-Hilbert method for multi-soliton solutions of a fifth-order nonlinear Schrodinger equation
    Kang, Zhou-Zheng
    Xia, Tie-Cheng
    Ma, Wen-Xiu
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (01)
  • [27] Riemann-Hilbert Approach and Soliton Solutions of the Higher-Order Dispersive Nonlinear Schrodinger Equations with Single and Double Poles
    Li, Zhi-Qiang
    Tian, Shou-Fu
    Yang, Jin-Jie
    Wang, Xiao-Li
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (02) : 369 - 388
  • [28] Interaction and manipulation for non-autonomous bright soliton solution of the coupled derivative nonlinear Schrödinger equations with Riemann-Hilbert method
    Li, Li
    Yu, Fajun
    Qin, Qing
    APPLIED MATHEMATICS LETTERS, 2024, 149
  • [29] N-SOLITON SOLUTIONS FOR A NONLINEAR WAVE EQUATION VIA RIEMANN-HILBERT APPROACH
    Nie, Hui
    Lu, Liping
    ACTA PHYSICA POLONICA B, 2019, 50 (04): : 793 - 811
  • [30] Kuznetsov–Ma soliton and Akhmediev breather of higher-order nonlinear Schrdinger equation
    李再东
    吴璇
    李秋艳
    贺鹏斌
    Chinese Physics B, 2016, 25 (01) : 524 - 528