Higher-Order Soliton Solutions for the Derivative Nonlinear Schrödinger Equation via Improved Riemann-Hilbert Method

被引:0
|
作者
Kuang, Yonghui [1 ]
Tian, Lixin [2 ]
机构
[1] Zhongyuan Univ Technol, Sch Math & Informat Sci, Zhengzhou 450007, Peoples R China
[2] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemann-Hilbert problem; Inverse scattering transform; Higher-order soliton; The derivative nonlinear Schr & ouml; dinger equation; Residue condition; MULTIPLE-POLE SOLUTIONS; SCHRODINGER-EQUATION; EVOLUTION-EQUATIONS; WAVES;
D O I
10.1007/s44198-024-00228-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss an improved Riemann-Hilbert method, by which arbitrary higher-order soliton solutions for the derivative nonlinear Schr & ouml;dinger equation can be directly obtained. The explicit determinant form of a higher-order soliton which corresponds to one pth order pole is given. Besides the interaction related to one simple pole and the other one double pole is considered.
引用
收藏
页数:15
相关论文
共 50 条