High-entropy oxide (Mg 0.2 Fe 0.2 Co 0.2 Cu 0.2 Zn 0.2 )O with rocksalt-to-spinel transformation and its electrocatalytic activity for the oxygen evolution reaction

被引:8
|
作者
Hong, Daehyeon [1 ]
Choi, Yun-Hyuk [1 ,2 ,3 ,4 ]
机构
[1] Daegu Catholic Univ, Grad Sch, Dept Adv Mat & Chem Engn, Gyongsan 38430, Gyeongbuk, South Korea
[2] Daegu Catholic Univ, Dept Energy Mat, Gyongsan 38430, Gyeongbuk, South Korea
[3] Daegu Catholic Univ, Dept Battery Engn, Gyongsan 38430, Gyeongbuk, South Korea
[4] Daegu Catholic Univ, Dept Mat Sci & Engn, Gyongsan 38430, Gyeongbuk, South Korea
关键词
High-entropy oxide; Rocksalt-spinel transformation; Solid -state reaction; Electrocatalyst; Oxygen evolution reaction; MECHANOCHEMICAL SYNTHESIS; DISTORTION; STABILITY; DESIGN;
D O I
10.1016/j.jallcom.2024.174029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Since the recent application of the concept of high entropy to multicomponent oxide systems, there has been an active pursuit of fabricating high-entropy oxides (HEOs) and exploring their applications across various fields. Given the relatively recent discovery of this novel material system, additional studies are necessary to enhance our understanding of structures and properties in a broader range of compositions. In this study, a rocksalt HEO with a novel composition, (Mg 0.2 Fe 0.2 Co 0.2 Cu 0.2 Zn 0.2 )O, is prepared through solid -state reactions at various calcination temperatures within the range of 1000 - 1400 degrees C. The formation of single-phased rocksalt solid solutions is observed under low-temperature calcination, while a spinel-related metastable phase and a spinel phase separate from the rocksalt phase during calcination at 1300 degrees C and 1400 degrees C, respectively. These rocksaltto-spinel structural transformations (i.e., phase separations), depending on calcination temperature, are carefully characterized using scanning transmission electron microscopy (STEM) and energy-dispersive spectroscopy (EDS) mapping techniques. Subsequently, it is discovered that the microstructure in the HEO significantly influences the kinetics of the electrocatalytic oxygen evolution reaction (OER) in alkaline water oxidation. These findings offer valuable insights into the structural phase transformation and the structure - activity relationship within HEO systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Low-temperature synthesis of high-entropy (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O nanoparticles via polyol process
    Li, Fei
    Zhang, Guo-Jun
    Abe, Hiroya
    OPEN CERAMICS, 2022, 9
  • [22] Is configurational entropy the main stabilizing term in rock-salt Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O high entropy oxide?
    Fracchia, Martina
    Coduri, Mauro
    Manzoli, Maela
    Ghigna, Paolo
    Tamburini, Umberto Anselmi
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [23] The role of Co valence in charge transport in the entropy-stabilized oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O
    Jacobson, V
    Huang, J.
    Titus, C. J.
    Smaha, R. W.
    Papac, M.
    Lee, S. J.
    Zakutayev, A.
    Brennecka, G. L.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2023, 106 (02) : 1531 - 1539
  • [24] Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder
    Mao, Aiqin
    Xiang, Hou-Zheng
    Zhang, Zhan-Guo
    Kuramoto, Koji
    Yu, Haiyun
    Ran, Songlin
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 484 : 245 - 252
  • [25] Preparation of high-entropy ceramic powder (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O by a precipitation method and kinetic analysis of the synthesis process
    Yv, Lina
    Wang, Jing
    Shi, Jun
    Shi, Zhongxiang
    Dai, Lijing
    CERAMICS INTERNATIONAL, 2022, 48 (02) : 2138 - 2147
  • [26] Synthesis and thermoelectric properties of the high-entropy (Fe0.2Co0.2Cu0.2Zn0.2Mn0.2)Nb2O6 with columbite structure
    Su, Tiane
    Ma, Dandan
    Zhu, Min
    MATERIALS LETTERS, 2025, 378
  • [27] Synthesis of porous (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high entropy oxide catalysts for peroxymonosulfate activation toward tetracycline degradation
    Yan, Xin
    Wang, Chaoli
    Ai, Tao
    Li, Zhuo
    Niu, Yanhui
    INORGANIC CHEMISTRY COMMUNICATIONS, 2023, 150
  • [28] Spinel-type high-entropy (Co0.2Mn0.2Fe0.2Zn0.2Ti0.2)3O4 oxides constructed from disordered cations and oxygen vacancies
    Wang, Bing
    Yao, Jincheng
    Wang, Junhua
    Chang, Aimin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 897
  • [29] Pressure-induced suppression of Jahn-Teller distortions and enhanced electronic properties in high-entropy oxide (Mg0.2Ni0.2Co0.2Zn0.2Cu0.2)O
    Yan, Jiejuan
    Zhang, Lingkong
    Liu, Junxiu
    Li, Nana
    Tamura, Nobumichi
    Chen, Bin
    Lin, Yu
    Mao, Wendy L.
    Zhang, Hengzhong
    APPLIED PHYSICS LETTERS, 2021, 119 (15)
  • [30] Stabilization by Configurational Entropy of the Cu(II) Active Site during CO Oxidation on Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O
    Fracchia, Martina
    Ghigna, Paolo
    Pozzi, Tommaso
    Tamburini, Umberto Anselmi
    Colombo, Valentina
    Braglia, Luca
    Torelli, Piero
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (09): : 3589 - 3593