Robust intrusion detection for network communication on the Internet of Things: a hybrid machine learning approach

被引:1
|
作者
Soltani, Nasim [1 ]
Rahmani, Amir Masoud [1 ,2 ]
Bohlouli, Mahdi [3 ]
Hosseinzadeh, Mehdi [4 ,5 ]
机构
[1] Islamic Azad Univ, Dept Comp Engn, Sci & Res Branch, Tehran, Iran
[2] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu, Yunlin, Taiwan
[3] Petanux GmbH, Res & Innovat Dept, Bonn, Germany
[4] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
[5] Univ Human Dev, Dept Comp Sci, Sulaymaniyah, Iraq
基金
英国科研创新办公室;
关键词
Machine learning; Intrusion detection; IoT; Network communication; Supervised learning;
D O I
10.1007/s10586-024-04483-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The importance and growth of the Internet of Things (IoT) in computer networks and applications have been increasing. Additionally, many of these applications generate large volumes of data, which are critical and require protection against attacks. Various techniques have been proposed to identify and counteract these threats. In this paper, we offer a hybrid machine learning approach (using the k-nearest neighbors and random forests as supervised classifiers) to enhance the accuracy of intrusion detection systems and minimize the risk of potential attacks. Also, we employ backward elimination and linear discriminant analysis algorithms for feature reduction and to lower computational costs. Following the training phase, when discrepancies arose between the decisions of the classifiers, the ultimate determination was supported by ISO/IEC 27001 regulations. The performance of the proposed model was assessed within a Python programming framework, utilizing the CICIDS 2017, NSL-KDD, and TON-IoT datasets. The outcomes illustrated that the proposed approach attained a noteworthy accuracy of 99.96% in the multi-class classification of CICIDS 2017, 99.37% in the binary classification of the NSL-KDD dataset, and 99.96% in the multi-class classification of TON-IoT dataset. Furthermore, the attack success rate for each dataset stands at 0.05%, 0.24%, and 0% respectively, demonstrating a significant reduction compared to other methods.
引用
收藏
页码:9975 / 9991
页数:17
相关论文
共 50 条
  • [21] A data-driven approach for intrusion and anomaly detection using automated machine learning for the Internet of Things
    Xu, Hao
    Sun, Zihan
    Cao, Yuan
    Bilal, Hazrat
    SOFT COMPUTING, 2023, 27 (19) : 14469 - 14481
  • [22] A data-driven approach for intrusion and anomaly detection using automated machine learning for the Internet of Things
    Hao Xu
    Zihan Sun
    Yuan Cao
    Hazrat Bilal
    Soft Computing, 2023, 27 : 14469 - 14481
  • [23] The robust scheme for intrusion detection system in Internet of Things
    Nguyen, Dat-Thinh
    Le, Kim-Hung
    INTERNET OF THINGS, 2023, 24
  • [24] An Intrusion Detection System for the Internet of Things Based on Machine Learning: Review and Challenges
    Adnan, Ahmed
    Muhammed, Abdullah
    Abd Ghani, Abdul Azim
    Abdullah, Azizol
    Hakim, Fahrul
    SYMMETRY-BASEL, 2021, 13 (06):
  • [25] Intrusion detection based on machine learning in the internet of things, attacks and counter measures
    Rehman, Eid
    Haseeb-ud-Din, Muhammad
    Malik, Arif Jamal
    Khan, Tehmina Karmat
    Abbasi, Aaqif Afzaal
    Kadry, Seifedine
    Khan, Muhammad Attique
    Rho, Seungmin
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (06): : 8890 - 8924
  • [26] Literature Review of Machine Learning Models on Intrusion Detection for Internet of Things Attacks
    Eriza, Aminanto Achmad
    Suryadi, M. T.
    INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 1094 - 1098
  • [27] Internet of Things: A survey on machine learning-based intrusion detection approaches
    da Costa, Kelton A. P.
    Papa, Joao P.
    Lisboa, Celso O.
    Munoz, Roberto
    de Albuquerque, Victor Hugo C.
    COMPUTER NETWORKS, 2019, 151 : 147 - 157
  • [28] A machine learning-based lightweight intrusion detection system for the internet of things
    Fenanir S.
    Semchedine F.
    Baadache A.
    Revue d'Intelligence Artificielle, 2019, 33 (03): : 203 - 211
  • [29] Intrusion Detection System Through Advance Machine Learning for the Internet of Things Networks
    Saba, Tanzila
    Sadad, Tariq
    Rehman, Amjad
    Mehmood, Zahid
    Javaid, Qaisar
    IT PROFESSIONAL, 2021, 23 (02) : 58 - 64
  • [30] Utilizing Blockchain for Distributed Machine Learning based Intrusion Detection in Internet of Things
    Cheema, Muhammad Asaad
    Qureshi, Hassaan Khaliq
    Chrysostomou, Chrysostomos
    Lestas, Marios
    16TH ANNUAL INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (DCOSS 2020), 2020, : 429 - 435