Time-dependent density functional theory with the orthogonal projector augmented wave method

被引:1
|
作者
Nguyen, Minh [1 ]
Duong, Tim [1 ]
Neuhauser, Daniel [1 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2024年 / 160卷 / 14期
基金
美国国家科学基金会;
关键词
ELECTRONIC-STRUCTURE CALCULATIONS; REAL-SPACE; AB-INITIO; IMPLEMENTATION;
D O I
10.1063/5.0193343
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The projector augmented wave (PAW) method of Blochl linearly maps smooth pseudo wavefunctions to the highly oscillatory all-electron DFT orbitals. Compared to norm-conserving pseudopotentials (NCPP), PAW has the advantage of lower kinetic energy cutoffs and larger grid spacing at the cost of having to solve for non-orthogonal wavefunctions. We earlier developed orthogonal PAW (OPAW) to allow the use of PAW when orthogonal wavefunctions are required. In OPAW, the pseudo wavefunctions are transformed through the efficient application of powers of the PAW overlap operator with essentially no extra cost compared to NCPP methods. Previously, we applied OPAW to DFT. Here, we take the first step to make OPAW viable for post-DFT methods by implementing it in real-time time-dependent (TD) DFT. Using fourth-order Runge-Kutta for the time-propagation, we compare calculations of absorption spectra for various organic and biological molecules and show that very large grid spacings are sufficient, 0.6-0.7 bohr in OPAW-TDDFT rather than the 0.4-0.5 bohr used in traditional NCPP-TDDFT calculations. This reduces the memory and propagation costs by around a factor of 3. Our method would be directly applicable to any post-DFT methods that require time-dependent propagations such as the GW approximation and the Bethe-Salpeter equation.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Time-dependent density functional theory with the multilayer fragment molecular orbital method
    Chiba, Mahito
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2007, 444 (4-6) : 346 - 350
  • [32] Variation-perturbation method in time-dependent density-functional theory
    Banerjee, A
    Harbola, MK
    PHYSICS LETTERS A, 1997, 236 (5-6) : 525 - 532
  • [33] Structural characterization of layered perovskite niobates using projector augmented wave (PAW) method of density functional theory (DFT)
    Adhikari, Jhashanath
    Smith, Luis J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [34] Electron scattering in time-dependent density functional theory
    Lacombe, Lionel
    Suzuki, Yasumitsu
    Watanabe, Kazuyuki
    Maitra, Neepa T.
    EUROPEAN PHYSICAL JOURNAL B, 2018, 91 (06):
  • [35] DENSITY-FUNCTIONAL THEORY FOR TIME-DEPENDENT SYSTEMS
    RUNGE, E
    GROSS, EKU
    PHYSICAL REVIEW LETTERS, 1984, 52 (12) : 997 - 1000
  • [36] Quantum defect and time-dependent density functional theory
    Burke, Kieron
    van Faassen, Meta
    Wasserman, Adam
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [37] Floquet formulation of time-dependent density functional theory
    Telnov, DA
    Chu, SI
    CHEMICAL PHYSICS LETTERS, 1997, 264 (05) : 466 - 476
  • [38] Several theorems in time-dependent density functional theory
    Hessler, P
    Park, J
    Burke, K
    PHYSICAL REVIEW LETTERS, 1999, 82 (02) : 378 - 381
  • [39] Solitons in Nuclear Time-Dependent Density Functional Theory
    Iwata, Yoritaka
    FRONTIERS IN PHYSICS, 2020, 8
  • [40] Excitonic effects in a time-dependent density functional theory
    Igumenshchev, Kirill I.
    Tretiak, Sergei
    Chernyak, Vladimir Y.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (11):