Cross-Image Disentanglement for Low-Light Enhancement in Real World

被引:4
|
作者
Guo, Lanqing [1 ]
Wan, Renjie [2 ]
Yang, Wenhan [3 ]
Kot, Alex C. [1 ]
Wen, Bihan [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Jurong West 639798, Singapore
[2] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518055, Peoples R China
关键词
Training; Lighting; Brightness; Reflectivity; Task analysis; Feature extraction; Image enhancement; Low-light enhancement; image restoration; disentanglement; MISALIGNMENT; NETWORKS; RETINEX; SPARSE;
D O I
10.1109/TCSVT.2023.3303574
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Images captured in the low-light condition suffer from low visibility and various imaging artifacts, e.g., real noise. Existing supervised algorithms for low-light image enhancement require a large set of pixel-aligned training image pairs, which are hard to prepare in practice. Though some recent unsupervised methods can alleviate such data challenges, many real world artifacts inevitably get falsely amplified in the enhanced results due to the lack of corresponding supervision. In this paper, instead of using perfectly aligned images for training, we creatively employ the misaligned real world images as the guidance, which are considerably easier to collect. Specifically, we propose a Cross-Image Disentanglement Network (CIDN) with weakly supervised learning, to separately extract cross-image brightness and image-specific content features from low/normal-light images. Based on that, CIDN can simultaneously correct the brightness and suppress image artifacts in the feature domain, which largely increases the robustness of the pixel shifts between training pairs. By considering real world corruptions, we propose a new training dataset with misaligned and noisy image pairs and its corresponding evaluation dataset. Experimental results show that our model achieves state-of-the-art performances on both the newly proposed dataset and other popular low-light datasets. The code implementation is publicly available at: https://github.com/GuoLanqing/CIDN.
引用
收藏
页码:2550 / 2563
页数:14
相关论文
共 50 条
  • [21] Low-light image enhancement for infrared and visible image fusion
    Zhou, Yiqiao
    Xie, Lisiqi
    He, Kangjian
    Xu, Dan
    Tao, Dapeng
    Lin, Xu
    IET IMAGE PROCESSING, 2023, 17 (11) : 3216 - 3234
  • [22] Low-Light Image Enhancement Based on RAW Domain Image
    Chen L.
    Zhang Y.
    Lyu Z.
    Ding D.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (02): : 303 - 311
  • [23] Attention Guided Low-Light Image Enhancement with a Large Scale Low-Light Simulation Dataset
    Lv, Feifan
    Li, Yu
    Lu, Feng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (07) : 2175 - 2193
  • [24] Attention Guided Low-Light Image Enhancement with a Large Scale Low-Light Simulation Dataset
    Feifan Lv
    Yu Li
    Feng Lu
    International Journal of Computer Vision, 2021, 129 : 2175 - 2193
  • [25] Low-light image enhancement based on normal-light image degradation
    Zhao, Bai
    Gong, Xiaolin
    Wang, Jian
    Zhao, Lingchao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (05) : 1409 - 1416
  • [26] Low-light image enhancement using inverted image normalized by atmospheric light
    Jeon, Jong Ju
    Eom, I. I. Kyu
    SIGNAL PROCESSING, 2022, 196
  • [27] SurroundNet: Towards effective low-light image enhancement
    Zhou, Fei
    Sun, Xin
    Dong, Junyu
    Zhu, Xiao Xiang
    PATTERN RECOGNITION, 2023, 141
  • [28] Invertible network for unpaired low-light image enhancement
    Jize Zhang
    Haolin Wang
    Xiaohe Wu
    Wangmeng Zuo
    The Visual Computer, 2024, 40 : 109 - 120
  • [29] Low-light image enhancement with geometrical sparse representation
    Jin Tan
    Taiping Zhang
    Linchang Zhao
    Darong Huang
    Zhenyuan Zhang
    Applied Intelligence, 2023, 53 : 11019 - 11033
  • [30] Low-light color image enhancement based on NSST
    Wu Xiaochu
    Tang Guijin
    Liu Xiaohua
    Cui Ziguan
    Luo Suhuai
    The Journal of China Universities of Posts and Telecommunications, 2019, 26 (05) : 41 - 48