Cross-Image Disentanglement for Low-Light Enhancement in Real World

被引:4
|
作者
Guo, Lanqing [1 ]
Wan, Renjie [2 ]
Yang, Wenhan [3 ]
Kot, Alex C. [1 ]
Wen, Bihan [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Jurong West 639798, Singapore
[2] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518055, Peoples R China
关键词
Training; Lighting; Brightness; Reflectivity; Task analysis; Feature extraction; Image enhancement; Low-light enhancement; image restoration; disentanglement; MISALIGNMENT; NETWORKS; RETINEX; SPARSE;
D O I
10.1109/TCSVT.2023.3303574
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Images captured in the low-light condition suffer from low visibility and various imaging artifacts, e.g., real noise. Existing supervised algorithms for low-light image enhancement require a large set of pixel-aligned training image pairs, which are hard to prepare in practice. Though some recent unsupervised methods can alleviate such data challenges, many real world artifacts inevitably get falsely amplified in the enhanced results due to the lack of corresponding supervision. In this paper, instead of using perfectly aligned images for training, we creatively employ the misaligned real world images as the guidance, which are considerably easier to collect. Specifically, we propose a Cross-Image Disentanglement Network (CIDN) with weakly supervised learning, to separately extract cross-image brightness and image-specific content features from low/normal-light images. Based on that, CIDN can simultaneously correct the brightness and suppress image artifacts in the feature domain, which largely increases the robustness of the pixel shifts between training pairs. By considering real world corruptions, we propose a new training dataset with misaligned and noisy image pairs and its corresponding evaluation dataset. Experimental results show that our model achieves state-of-the-art performances on both the newly proposed dataset and other popular low-light datasets. The code implementation is publicly available at: https://github.com/GuoLanqing/CIDN.
引用
收藏
页码:2550 / 2563
页数:14
相关论文
共 50 条
  • [1] Exploiting Illumination Knowledge in the Real World for Low-Light Image Enhancement
    Guo, Lanqing
    Lin, Yuxin
    Li, Jian
    Wen, Bihan
    IEEE MULTIMEDIA, 2024, 31 (01) : 33 - 41
  • [2] Unveiling Advanced Frequency Disentanglement Paradigm for Low-Light Image Enhancement
    Zhou, Kun
    Lin, Xinyu
    Li, Wenbo
    Xu, Xiaogang
    Cai, Yuanhao
    Li, Zhonghang
    Han, Xiaoguang
    Lu, Jiangbo
    COMPUTER VISION-ECCV 2024, PT VII, 2025, 15065 : 204 - 221
  • [3] Degrade for upgrade: Learning degradation representations for real-world low-light image enhancement
    Xu, Lintao
    Hu, Changhui
    Zhu, Weihong
    Wu, Fei
    Cai, Ziyun
    Ye, Mengjun
    Lu, Xiaobo
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 119
  • [4] Low-Light Stereo Image Enhancement
    Huang, Jie
    Fu, Xueyang
    Xiao, Zeyu
    Zhao, Feng
    Xiong, Zhiwei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2978 - 2992
  • [5] Low-Light Hyperspectral Image Enhancement
    Li, Xuelong
    Li, Guanlin
    Zhao, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Decoupled Low-Light Image Enhancement
    Hao, Shijie
    Han, Xu
    Guo, Yanrong
    Wang, Meng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (04)
  • [7] Benchmarking Low-Light Image Enhancement and Beyond
    Liu, Jiaying
    Xu, Dejia
    Yang, Wenhan
    Fan, Minhao
    Huang, Haofeng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (04) : 1153 - 1184
  • [8] Lightening Network for Low-Light Image Enhancement
    Wang, Li-Wen
    Liu, Zhi-Song
    Siu, Wan-Chi
    Lun, Daniel P. K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7984 - 7996
  • [9] Benchmarking Low-Light Image Enhancement and Beyond
    Jiaying Liu
    Dejia Xu
    Wenhan Yang
    Minhao Fan
    Haofeng Huang
    International Journal of Computer Vision, 2021, 129 : 1153 - 1184
  • [10] Low-light image enhancement with knowledge distillation
    Li, Ziwen
    Wang, Yuehuan
    Zhang, Jinpu
    NEUROCOMPUTING, 2023, 518 : 332 - 343