Combined Supercritical CO2 Brayton Cycle and Organic Rankine Cycle for Exhaust Heat Recovery

被引:1
|
作者
Carapellucci, Roberto [1 ]
Di Battista, Davide [1 ]
机构
[1] Univ Aquila, Dept Ind & Informat Engn & Econ, Ple Pontieri 1 Monteluco Roio, I-67100 Laquila, Italy
关键词
energy conversion/systems; energy systems analysis; waste heat recovery; supercritical CO2; ORC; POWER-GENERATION SYSTEM; ENERGY RECOVERY; ORC; INTEGRATION; EMISSIONS;
D O I
10.1115/1.4065080
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In order to reduce energy consumption and related CO2 emissions, waste heat recovery is considered a viable opportunity in several economic sectors, with a focus on industry and transportation. Among different proposed technologies, thermodynamic cycles using suitable organic working fluids seem to be promising options, and the possibility of combining two different cycles improves the final recovered energy. In this paper, a combination of Brayton and Rankine cycles is proposed: the upper cycle has supercritical carbon dioxide (sCO(2)) as its working fluid, while the bottomed Rankine section is realized by an organic fluid (organic Rankine cycle (ORC)). This combined unit is applied to recover the exhaust energy from the flue gases of an internal combustion engine (ICE) for the transportation sector. The sCO(2) Brayton cycle is directly facing the exhaust gases, and it should dispose of a certain amount of energy at lower pressure, which can be further recovered by the ORC unit. A specific mathematical model has been developed, which uses experimental engine data to estimate a realistic final recoverable energy. The model is able to evaluate the performance of each recovery subsection, highlighting interactions and possible trade-offs between them. Hence, the combined system can be optimized from a global point of view, identifying the most influential operating parameters and also considering a regeneration stage in the ORC unit.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A Novel Solar Receiver for Supercritical CO2 Brayton Cycle
    Teng, Liang
    Xuan, Yimin
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 339 - 344
  • [42] PERFORMANCE CHARACTERISTICS OF AN OPERATING SUPERCRITICAL CO2 BRAYTON CYCLE
    Conboy, Thomas
    Wright, Steven
    Pasch, James
    Fleming, Darryn
    Rochau, Gary
    Fuller, Robert
    PROCEEDINGS OF THE ASME TURBO EXPO 2012, VOL 5, 2012, : 941 - 952
  • [43] DESIGN METHODOLOGY OF SUPERCRITICAL CO2 BRAYTON CYCLE TURBOMACHINERIES
    Lee, Jekyoung
    Lee, Jeong Ik
    Ahn, Yoonhan
    Yoon, Hojoon
    PROCEEDINGS OF THE ASME TURBO EXPO 2012, VOL 5, 2012, : 975 - 983
  • [44] Working Fluid Model for Supercritical Co2 Brayton Cycle
    Milewski, Jaroslaw
    Wolowicz, Marcin
    Ziembicki, Gabriel
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [45] Researchers Develop Supercritical CO2 Brayton Cycle Turbines
    不详
    POWER, 2011, 155 (05) : 12 - +
  • [46] Research on the Development of the Supercritical CO2 Dual Brayton Cycle
    Baik, Young-Jin
    Na, Sun Ik
    Cho, Junhyun
    Shin, Hyung-Ki
    Lee, Gilbong
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2016, 40 (10) : 673 - 679
  • [47] Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
    Conboy, Thomas
    Wright, Steven
    Pasch, James
    Fleming, Darryn
    Rochau, Gary
    Fuller, Robert
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2012, 134 (11):
  • [48] THERMODYNAMIC PERFORMANCE ANALYSIS OF SUPERCRITICAL CO2 BRAYTON CYCLE
    Yang, Xiaoping
    Cai, Zhuodi
    THERMAL SCIENCE, 2021, 25 (05): : 3933 - 3943
  • [49] THERMAL ENERGY STORAGE FOR THE SUPERCRITICAL CO2 BRAYTON CYCLE
    Bueno, P. C.
    Bates, L.
    Anderson, R.
    Bindra, H.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 9, 2015,
  • [50] A proposed coal-to-methanol process with CO2 capture combined Organic Rankine Cycle (ORC) for waste heat recovery
    Liu, Xia
    Liang, Jianeng
    Xiang, Dong
    Yang, Siyu
    Qian, Yu
    JOURNAL OF CLEANER PRODUCTION, 2016, 129 : 53 - 64