A Novel Transformer Network with a CNN-Enhanced Cross-Attention Mechanism for Hyperspectral Image Classification

被引:7
|
作者
Wang, Xinyu [1 ]
Sun, Le [1 ,2 ]
Lu, Chuhan [3 ]
Li, Baozhu [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Atmospher Sci, Nanjing 210044, Peoples R China
[4] Zhuhai Fudan Innovat Inst, Internet Things & Smart City Innovat Platform, Zhuhai 519031, Peoples R China
关键词
convolutional neural network (CNN); hyperspectral image classification; transformer; multi-scale feature;
D O I
10.3390/rs16071180
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recently, with the remarkable advancements of deep learning in the field of image processing, convolutional neural networks (CNNs) have garnered widespread attention from researchers in the domain of hyperspectral image (HSI) classification. Moreover, due to the high performance demonstrated by the transformer architecture in classification tasks, there has been a proliferation of neural networks combining CNNs and transformers for HSI classification. However, the majority of the current methods focus on extracting spatial-spectral features from the HSI data of a single size for a pixel, overlooking the rich multi-scale feature information inherent to the data. To address this problem, we designed a novel transformer network with a CNN-enhanced cross-attention (TNCCA) mechanism for HSI classification. It is a dual-branch network that utilizes different scales of HSI input data to extract shallow spatial-spectral features using a multi-scale 3D and 2D hybrid convolutional neural network. After converting the feature maps into tokens, a series of 2D convolutions and dilated convolutions are employed to generate two sets of Q (queries), K (keys), and V (values) at different scales in a cross-attention module. This transformer with CNN-enhanced cross-attention explores multi-scale CNN-enhanced features and fuses them from both branches. Experimental evaluations conducted on three widely used hyperspectral image (HSI) datasets, under the constraint of limited sample size, demonstrate excellent classification performance of the proposed network.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Cross-attention interaction learning network for multi-model image fusion via transformer
    Wang, Jing
    Yu, Long
    Tian, Shengwei
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139
  • [42] Robust Hyperspectral Image Classification Using a Multi-Scale Transformer with Long-Short-Distance Spatial-Spectral Cross-Attention
    Peng, Danyang
    Feng, Haoran
    Wu, Jun
    Wen, Yi
    Han, Tingting
    Li, Yuanyuan
    Yang, Guangyu
    Qu, Lei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [43] Hybrid convolutional network with enhanced graph attention mechanism (HCN-EGAM) for hyperspectral image classification
    Sandeep
    Sonnad, Shashidhar
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2024,
  • [44] Bidirectional feature fusion via cross-attention transformer for chrysanthemum classification
    Chen, Yifan
    Yang, Xichen
    Yan, Hui
    Liu, Jia
    Jiang, Jian
    Mao, Zhongyuan
    Wang, Tianshu
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (02)
  • [45] Asymmetric Cross-Attention Hierarchical Network Based on CNN and Transformer for Bitemporal Remote Sensing Images Change Detection
    Zhang, Xiaofeng
    Cheng, Shuli
    Wang, Liejun
    Li, Haojin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [46] Multi-scale cross-attention transformer encoder for event classification
    Hammad, A.
    Moretti, S.
    Nojiri, M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (03)
  • [47] Attention Head Interactive Dual Attention Transformer for Hyperspectral Image Classification
    Shi, Cuiping
    Yue, Shuheng
    Wang, Liguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [48] Cardiac signals classification via optional multimodal multiscale receptive fields CNN-enhanced Transformer
    Zhang, Tian
    Lian, Cheng
    Xu, Bingrong
    Su, Yixin
    Zeng, Zhigang
    KNOWLEDGE-BASED SYSTEMS, 2024, 300
  • [49] CenterFormer: A Center Spatial-Spectral Attention Transformer Network for Hyperspectral Image Classification
    Jia, Chenjing
    Zhang, Xiaohua
    Meng, Hongyun
    Xia, Shuxiang
    Jiao, Licheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 5523 - 5539
  • [50] Optimized Input for CNN-Based Hyperspectral Image Classification Using Spatial Transformer Network
    He, Xin
    Chen, Yushi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (12) : 1884 - 1888