Multidomain Constrained Translation Network for Change Detection in Heterogeneous Remote Sensing Images

被引:4
|
作者
Wu, Haoran [1 ]
Geng, Jie [1 ]
Jiang, Wen [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710072, Peoples R China
关键词
Contrastive learning; global-local constraint; heterogeneous image change detection (HICD); remote sensing; spatial-frequency domain constraint; SAR; GRAPH;
D O I
10.1109/TGRS.2024.3381196
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In heterogeneous image change detection (HICD), preventing neural networks from distorting critical information is the main challenge of such methods based on deep translation. Most of these methods rely on a priori information to suppress the effects of changed pixels in the translation process, but the accuracy of the prior information will influence the results of translation. In this article, we propose an end-to-end multidomain constrained translation network (MDCTNet) for unsupervised HICD. The proposed MDCTNet utilizes an improved generative adversarial network (GAN) to generate target domain images realistically. Furthermore, to retain the content information of the source domain images, MDCTNet leverages contrastive learning to ensure the consistency of adjacent pixel relationships. Meanwhile, it employs high-frequency information consistency which preserves pivotal characteristics. We compare the proposed MDCTNet with state-of-the-art algorithms to verify the efficacy of the proposed technique. The experimental results on five real datasets demonstrate the effectiveness of the proposed method.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [31] Hyperboloid-Embedded Siamese Network for Change Detection in Remote Sensing Images
    Yang, Qian
    Zhang, Shujun
    Li, Jinsong
    Sun, Yukang
    Han, Qi
    Sun, Yuanyuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 9240 - 9252
  • [32] Global-aware siamese network for change detection on remote sensing images
    Zhang, Ruiqian
    Zhang, Hanchao
    Ning, Xiaogang
    Huang, Xiao
    Wang, Jiaming
    Cui, Wei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 199 : 61 - 72
  • [33] A Difference Enhanced Neural Network for Semantic Change Detection of Remote Sensing Images
    Wang, Renfang
    Wu, Hucheng
    Qiu, Hong
    Wang, Feng
    Liu, Xiufeng
    Cheng, Xu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [34] Heterogeneous Feature Collaboration Network for Salient Object Detection in Optical Remote Sensing Images
    Liu, Yutong
    Xu, Mingzhu
    Xiao, Tianxiang
    Tang, Haoyu
    Hu, Yupeng
    Nie, Liqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [35] Building Change Detection for Remote Sensing Images Using a Dual-Task Constrained Deep Siamese Convolutional Network Model
    Liu, Yi
    Pang, Chao
    Zhan, Zongqian
    Zhang, Xiaomeng
    Yang, Xue
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (05) : 811 - 815
  • [36] REMOTE SENSING IMAGE REGRESSION FOR HETEROGENEOUS CHANGE DETECTION
    Luppino, Luigi T.
    Bianchi, Filippo M.
    Moser, Gabriele
    Anfinsen, Stian N.
    2018 IEEE 28TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2018,
  • [37] Hierarchical Attention Feature Fusion-Based Network for Land Cover Change Detection With Homogeneous and Heterogeneous Remote Sensing Images
    Lv, ZhiYong
    Liu, Jie
    Sun, Weiwei
    Lei, Tao
    Benediktsson, Jon Atli
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [38] Elastic Registration of Remote Sensing Images for Change Detection
    Sun Y.
    Wang H.
    Li F.
    Wang N.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2018, 43 (01): : 53 - 59
  • [39] Change detection of multisource remote sensing images: a review
    Jiang, Wandong
    Sun, Yuli
    Lei, Lin
    Kuang, Gangyao
    Ji, Kefeng
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)
  • [40] Unsupervised change detection methods for remote sensing images
    Melgani, F
    Moser, G
    Serpico, SB
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VII, 2002, 4541 : 211 - 222